SURESH

GYAN VIHAR

Il V E R S I T'Y
Accredlted by NAAC with ‘A+’ Grade

Master of Computer Application
(M.C.A)

Data Structures through C
Semester-I
Author - Dr. Anil Kumar Pal

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra

Assistant Professor, CDOE, SGVU M. Ashphaq Ahmad

Ms. Kapila Bishnoi Assistant Professor, CDOE, SGVU

Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

SYLLABUS
MCA (Semester - 1)

Data Structure through C (MCA-103)

Learning Outcome:

While studying the Data Structures course, the student shall be able to:

Learn the concept of data structures through ADT including List, Stack, and Queues.
Design and implement various data structure algorithms.

Understand various techniques for representation of the data in the real world.

Able to develop application using data structure algorithms

Unit:1

Definition of Algorithm and Data structure- Types of Data structure (linear and non- linear
data structure) - Linear data structure: Array, Stack, and Queue - Linked List-doubly linked
list and circular list - Recursive and non recursive algorithm.

Unit: 2
Binary Tree — notations, terminology, Representation, Binary tree Traversal and Application -
Graph- Notations, Terminology-Representation, Traversal and Application. Performance
analysis of an algorithm.-Tabular method.

Unit: 3
Min/Max heaps — Deaps — Leftist Heaps - Binomial Heaps — Fibonacci Heaps - Skew Heaps
— Lazy-Binomial Heaps.

Unit: 4
Binary Search Trees — AVL Trees - Red-Black trees — Multi-way Search Trees - B-Trees—
Splay Trees — Tries.

Unit:5
Segment Trees — k-d Trees - Point Quad Trees — MX-Quad Trees - R-Trees — TV Trees

Reference books:

1. AE. Horowitz, S.Sahni and Dinesh Mehta, Fundamentals of Data structures in C++,
University Press, 2007.

2. AE. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms/C++, Second

Edition, University Press, 2007.

A G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Printice—Hall, 1988.

4. AV.S. Subramanian, Principles of Multimedia Database systems, Morgan
Kaufman,1998

w

MCA-03: Data Structures through C

Page No:

Block 1 | C Programming Language Fundamentals 4

Unit 1 Language Fundamentals 5

Unit 2 Data Types And I/O Functions 14
Unit 3 Control Statements 39
Block 2 | Structured Programming with C 55
Unit 4 Arrays and structures 56
Unit 5 Storage classes and Functions 71

Unit 6 File Handling In C 84
Block 3 | Data Structures in C 98
Unit 7 Stacks and Queues 99
Unit 8 Linked list 111
Unit9 Graphs 129
Bilock 4 | Tree, Searching and Sorting 140
Unit 10 Trees, Searching and Sorting techniques 141

Course Introduction

This book provides a complete guide for the implementation of data structures
through C concepts. This book is very much helpful for you career
development in the statistics field, so C programming with data structure is
very much essential in this competitive world. There are large numbers of
examples, practical questions, objectives, summaries of important topics,
referral books and learning activities are available in this book, which are very
much useful for universities and job oriented examinations of various reputed
companies. It is very useful for BCA, MCA and PGDCA student of
Universities, computer institutions and so on.

This book covers four blocks and we discussed many topics with detailed
explanation for each block; Block one deal with C programming language, block
two deal with structured programming with C, block three deals with the Data
structures in C and finally block four deals with Trees, searching and <. 'ng and
file organization.

Most of the concepts in the text are illustrated by several examples are important
topics in their own right and may be treated as such. We feel that, at the stage of
a student’'s development for which the test is designed, it is more important to
cover several examples in great detail than to cover a broad range of topics
cursorily. All the programs and algorithms in this text have been tested and
debugged. Of course, any errors that remain are the sole responsibility of the
authors. We have tried the best to avoid the mistakes and errors, however their
presence cannot be ruled out. Your valuable suggestions and corrections are
welcomed to improve our quality. This book is dedicated to all of our students
and colleagues.

Block 1: Introduction

This block will teach you about the C Programming
language fundamentals. This block is divided into three units.

Unit 1: This unit deals with the basic structure of a C program
and has been discussed in detail with reference to preprocessor

directives.

Unit 2 : This unit deals with the different data types in C and the
basic input and output functions in C.

Unit 3: This unit deals a detailed study on compiling and
running a simple C program and also the various looping

structures in C. It also includes an introduction to pointers.

Unit-1

Language Fundamentals

Structure

Overview

Learning Objectives
1.0Introduction
1.1 C Programming language
1.2 Structure of a C Program
1.3 preprocessor directives
1.4 main() function

Let us sum up

Answer to learning activities

References

Overview

This unit is devoted to the basic introduction to C

programming language and has been discussed in detail.

Learning Objectives

At the end of this unit you will have a clear understanding
on the basic structure of a C program.

1.0 INTRODUCTION

The vehicle for the computer solution to a problem is a set of

explicit and unambiguous instructions expressed in a
programming language. This set of instructions is called a
program. An algorithm corresponds to a solution to a problem
that is independent of any programming language. To obtain the

computer solution to a problem once we have the program we
usually have to supply the program with input or data. The
program then takes this input and manipulates it according to its
instructions and eventually produces an output which represents
the computer solution to the problem. An algorithm consists of a
set of explicit and unambiguous finite steps which, when carried
out for a given set of initial conditions, produce the

corresponding output and terminate in a finite time.
The problem solving aspect consists of the following:

¢ Problem definition phase — work out what must be done
rather than how to do it; must try and extract from the

problem statement set of precisely defined tasks.
e Getting started on a problem

e The use of specific examples — pick a specific example
of the general problem we wish to solve and try to work
out the mechanism that will allow us to solve this

particular problem.

e Similarities among problems — bring in as much as past
experience as possible to bear on the current problem,
in this respect it is important to see if there are any
similarities between the current problem and other
problems that we have solved or have been solved.
Develop an ability to view a problem from a variety of

angles.

e Working backwards from the solution — assume that we
already have the solution to the problem and then try to

work backwards to the starting conditions.

e General problem-solving concepts — wusing most

common principles such as divide and conquer strategy;

the original problem is divided into two or more
subproblems. which can be solved by the same
technique. If it is possible to proceed with this splitting
into smaller subproblems we will eventually reach the
stage where the subproblems are small enough to be
solved without further splitting. The techniques such as
greedy search, backtracking and branch-and-bound
evaluations are variations of dynamic programming.
They all tend to guide a computation in such a way that
the minimum amount of effort is expended on exploring

solutions that have been established to be suboptional.

Any algorithm can be written as a program in any of the
programming languages. These programming languages are
nothing but a set of instructions which when given an input

produce the required output.

1.1 C PROGRAMMING LANGUAGE

C is a general purpose language which features

economy of expression, modern flow and data structures, and a
rich set of operators. C was originally designed for and
implemented on the UNIX operating system on the DEC PDP-
11, by Dennis Ritche in 1972. C is not tied to any particular
hardware or system, however, and it is easy to write programs
that will run without change on any machine that supports C. It
is a relatively ‘low level’ language. It means that it deals with the
same sort of objects such as characters, numbers and
addresses. These may be combined and moved about with the
usual arithmetic and logical operators implemented by actual
machines. C is highly portable, that is C written for one
computer can be run on another with little or no modification.

The characters that can be used to form words, numbers
and expressions. The characters in C are grouped into the

following categories:
1. Letters — Uppercase A --- Z, Lowercase a --- z
2. Digits — All decimal digits 0 --- 9

3. Special Characters —

, comma . period

; semicolon . colon

? question mark ‘ apostrophe

“ quotation mark ! exclamation mark
| vertical bar / slash

\ backslash ~ tilde

_ underscore $ dollar sign

% per cent sign # number sign

& ampersand A caret

* asterisk - minus sign

+ plus sign < opening angle bracket or

less than sign

> greater than sign

(left parenthesis) right parenthesis
[left bracket] right bracket
{ left brace } right brace

4. White Spaces —

Blank space, Horizontal Tab, carriage return, New line,
Form feed

Identifiers are names given to various program elements
such as variables, function and arrays. They consist of letters
and digits in any order but the first character must be a letter.
Uppercase and lowercase are allowed, however lowercase is

preferred. Underscore can be included in the middle of an

identifier.
Valid - X y12 sum_A1 _temp TABLE
Invalid - 4" X" ord-no error flag

Some compliers recognize 1% 8 characters others accept
first 31 characters.

Keywords are reserved words that have standard
predefined meanings in C. They can be used for their intended

purpose only. They cannot be used as programmer defined

identifiers.

auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned | void
volatile while

Some compliers include,

ada far near arm fortran

pascalentry huge

10

1.2 C PROGRAM STRUCTURE

C Local Definitions)

Statements

Figure 1.1 Structure of a C Program

1.3 PREPROCESSOR DIRECTIVES

The preprocessor commands include the needed library
information for the programs we write. Preprocessor directives
start with #

#include copies a file into the source code
#include <systemFilename>
#include “undefinedFilename”
#include <stdio.h>
» stdio.h is the standard input/output header
« .h files are header files

» Header files contain definitions

1.4 MAIN() Function

Programs must have a main() function. The two allowed

formats are:

11

int main(void)
int main(int argc, char *argv[])
Our first C Program could be of the form,
#include <stdio.h>
main()

{
printf (“Hello World\n”);

} /* end of main */

The C language has a number of library functions which
are not part of the language, but can be included. Some
functions return a value, while others a true or false value.
Some others carry our the function required but do not return
any value. A typical set of library functions will include a large
number of functions that are common to most C compliers. It is
accessed by writing the function name, followed by a list of
arguments about the information being passed to the function.
The arguments must be enclosed in parenthesis and
separated by commas. The arguments could be constants,
variable names, or complex expressions. The parenthesis

must be present even if there are no arguments.

Eg: Program reads in a lowercase character and converts it
to uppercase and then writes out the upperca-. ~haracter.

#include <stdio.h>
main()
{

int lower, upper;

12

lower = getchar();
upper = toupper (lower);
putchar(upper);

}

Program contains three library functions gefchar,
toupper and putchar. The first two functions each return a
character (getchar from the keyboérd and toupper the
converted character). Putchar causes the character in
uppercase to be displayed. Getchar has no arguments and
hence empty parenthesis. The preprocessor statement
#include <stdio.h> causes the contents of the file stdio.h to be
inserted into the program at the start of the compilation
process. The information contained in this file is essential for
the proper functioning of the library functions getchar and
putchar.

Let us sum up

We have covered about the basic concepts to programming and
outlined the fundamental structure of a C program.

Learning Activities

a) Fill in the blanks:

1. A setof instructions is calleda ___

2. #include <stdio.h> is an example for

b) State whether true or false:

1) An algorithm need not terminate in finite time.

2) The function main() is optional in a C program.

13

Answers to Learning Activities
a) Fill in the blanks:

1. program

2. Preprocessor Directive.

b) State whether true or false:
1) False.

2) False.

Model Questions

1. Explain in detail the concept of programming.
2. Write notes on the basic structure of a C program.

3. Show the use of library functions in a C program

References
1. Gottfried, B.S., “Schaum’s Outline of Theory and Problems
of Programming in C", Tata McGraw Hill, Delhi, 1995.

2. Kerninghan, B.W. and Ritchi, D.M., The C Programming
Prentice Hall of India, Delhi, 1998.

14

Unit-2

DATA TYPES AND I/O FUNCTIONS

Structure
Overview
Learning objectives
2.0 Data Types in C
2.1 Operators and Expressions
2.2 Input and Output Functions
2.3 Compiling and Running a C Program
Let us sum up
Answer to learning activities

References

Overview

This unit is devoted to the detailed study of the various
data types in C. It covers the major input and output functions

available in C.

Learning Objectives

At the end of this unit you will have a clear knowledge on
the various data types of the several input and output functions

in C and their implementation in basic programs.

2.0 DATATYPESINC

The basic data types in C are:
» Integer

» Character

15

» Floating point

» Double Floating point

Primitive Data Types

Data Type

C-Implementation

voiud

void

character

char (1 byte)

mteger

unaigned short int (1l byte)
unsigned int (2 or4 bytes)
unsigned long int (4 or 8 bytes)

short int {1 byte)
int (2or4 bytes)
long int (4 or 8 bytes)

floating point

float (4 bytes)
double (8 bytes)
long double (10 bytes)

Figure 2.1: Primitive Data Types in C

These can be augmented using qualifiers such as short,

long, signed and unsigned.

CONSTANTS:

Numeric constants — are numeric values. Commas and

blanks are not allowed. They can be preceded by minus sign.

Their values cannot exceed specified minimum and maximum

bounds.

Integer Constants are integer valued number. It is a

sequence of digits, written in decimal, octal or hexadecimal.

Valid - 0 1 743 9999

Invalid - 12,245 36.0

10 20 30

123-45-6789 0900

16

In octal,

Valid - 0 01 0743 07777

Invalid - 743 05280 TrLA2T7

Floating point Constants are decimal numbers that contain

either a decimal point or an exponent.

Valid - 1. 0.5 456.89 4000.
5.7E+8 2E7 0.008e-6
Eg: 1.2E-7or 1.2e-7 0.18e-5 or 18e-7
9x 10° can be written as 90000.
9e5 9E5 9.0e+5
9e6 0.636 90E4
90.E+4 900e3
Invalid -1 2,000.0 2E56.5 4E5 7

Character Constants are a single character enclosed in

apostrophes. Has equivalent ASCII value.

‘A - 65 Z2'- 90
‘a’ - 97 'z’ -122
1" - 499 - &7

Escape sequences:
bell \a newline \n

backspace \b form feed \f

vertical tab \v

horizontal tab \t
null \O

carriage return

quotation mark

17

\r
il 5

\\

String Constants consists of any number of consequent
characters enclosed in double quotes.

Symbolic Constant is a name that substitutes for a
sequence of characters. The characters may represent a
numeric constant, a character or a string constant. When the
program is complied, each occurrence of a symbolic constant is
replaced by its corresponding character sequence. These
constants are usually defined at the beginning of the program. It
is defined by writing,

#define name text

where name represents a symbolic name, typically written in
uppercase letters and ftext represents the sequence of
characters associated with the symbolic name. Not that text
does not end with a semicolon, as a symbolic constant definition
is not a true C statement.

#define TAXRATE 0.65

#define PI 3.141593

#define TRUE 1

#define FALSE 0

#define SUBJECT “Operating Systems”
VARIABLES:

A variable is an identifier that is used to represent some
specified type of information within a designated portion of the
program. A variable represents a single data item, that is, a
numeric quantity or a character constant. The data item has to
be assigned to the variable at some point in the program. The
data item can be accessed later in the program simply by
referring to the variable.

18

int a, b, c;

char d;

a=2

o
1l

5.

-

c=9

B

d="Y;
The first two line are type declarations which specify that
variables a, b, ¢ are integer variables and d is a character

variable. In the following lines corresponding values are

assigned to the variables.
DECLARATIONS:

A declaration associates a group of variables with a
specific data type. All variables must be declared before they
are used in the executable statements. A declaration consists of
a data type followed by one or more variable names, ending
with a semicolon. Initial values can be assigned to variables
within a type declaration. To do so, the declaration must consist
of a data type, followed by a variable name, an equal sign (=)
and a constant of the appropriate type. A semicolon must be
written at the end.

Eg:
int x =10;
char sname = ‘a’;
float avg=3.5;

double sum = 0.45 x 10°°:

19

The value of any expression can be converted to a
different data type if desired. To do so, the expression must be
preceded by the name of the desired data type, enclosed in

parenthesis.
(data type) expression

This type of construction is called as a cast. It is also called
as type cast.

Eg:

If i is of type integer (value 4) and j of type float (value
8.5), the expression, (i +j) % 4 is invalid as (i + j) is not integer
type. If the expression is changed as, ((int) (i +j)) % 4, it
forces the first operand to be an integer and is thus valid.

EXPRESSIONS:

An expression represents a single data-item such as a
number or a character. It may contain a single entity, such as a
constant, a variable, an array element or a reference to a
function. It may also contain some combination of such entities
interconnected by one or more operators. Expressions can also

represent logical conditions that are either true or false.

Eg:

a+b X =y cC=Xx-2z

t==y b<=c +Hi
STATEMENTS:

A statement causes the computer to carry out some
action. Some o the different classes of statements in C are
expression statements (causes the value of the expression on
the right of the equal sign to be assigned to the variable on the

left), compound statements (consists of several individual

20

statements enclosed within a pair of braces { }. The individual
statements may be expression statements, compound
statements or control statements. Thus this type has the
capacity for embedding statements within other statements) and
control statements (used to create special program features
such as logical tests, loops and branches).

2.1 OPERATORS AND EXPRESSIONS

The data items that operators act upon are called

operands. Some operators require two operands while some
others act upon single operand. Most operators allow the
individual operands to be expressions. The operators in C are:

1 Arithmetic

Z Unary

3. Relational
4. Logical

S. Assignment

6. Conditional

Arithmetic Operators: The five operators are addition (+),
subtraction (-), multiplication (*), division (/) and remainder after
integer division (%), also referred as modulus operator.
Operands can e integer, floating point or character (the ASCII
values will be taken). The modulus operator and the division

operator require the second operand to be non-zero.
Eg.
1. Assume a = 15 and b = 10, so a+b = 25; a-b = 5;
a* b =150; alb = 1; a%b =5 (as a and b are
integers the decimal values are neglected in
division.

21

2 Assume a = 15.5and b = 10.2, so a+b = 25.7; a-b
=5.3;a*b=158.1; alb=1.52; a%b =5.2

3 If a and b are characters, a+b = 97+98=195; b-a =
1; a+b-100 = 98

4, If negative values are used, a =-2and b =5, a+b
=3;a-b =-7; a*b =-10; a/b = -0.4;

Unary Operators is a class of operators that act upon single
operand to produce a new value. The operators usually precede
the operands.

Unary minus operator precedes the positive constant
value - -543, -0FF56, -0.7, -3*(x+Yy)

Increment operator causes its operand to be increased
by one — if the variable i is assigned a value 7, i++ is equivalent
toi=i+1.

Decrement operator causes its operand to be decreased
by one - if the variable i is assigned a value 5, i-- is equivalent to
i=i-1.

The sizeof operator returns the size of its operand in
bytes. It always precedes its operand.

Eg:
1. printf (“Integer is %d\n”, sizeof(integer));
2. char text[] = “California”;
printf (“Number of characters = %d\n”, sizeof text);
Number of character = 11
The cast operator is also an unary operator.

The ! operator negates the value of any logical
expression (the original expression if true becomes false and

22

vice versa). The operator is called as logical negation or logical
not operator.

Relational and Logical Operators: The following operators
have the same precedence and fall below the precedence of

unary and arithmetic operators.

< less than

> greater than

s less than or equal to
e greater than or equal to

the associativity of these operators is left-right.

The equality operators = = (equal to) and != (not equal to)
fall into separate precedence group below that of the relational
operators. These 6 operators are used to form logical
expressions which represent conditions that are either true or
false. The resulting expressions will be of type integer and so
the true value will be 1 and false 0.

The logical operators are && (and) and || (or). These are
referred to as logical AND and logical OR.

Assignment Operators are used to form assignment
expressions which assign the value of an expression to an

identifier. The format is
identifier (operator) expression
The operators are = += = *= /= %=
=0
expression1 += expression2 is equal to

expression1 = expression1 + expression2

23

Conditional Operator is used for simple conditions. The
conditional expression is written as

expression1 ? expression2 : expression3

When evaluating the conditional expression, expression1
is evaluated first. If expression1 is true (value is nonzero), then
expression2 is evaluated and this becomes the value of the
conditional expression. If expression1 is false, then expression3
is evaluated and this becomes the value of the conditional
expression.

The precedence for operators is as follows:

Unary =, ++, -, |, sizeof, (type) R-L
Arithmetic *,/, %,+, - L=>R
Relational <, <=, > >= L=>R
Equality ==, I= L=>R
Logical and && L=2R
Logical or || L=>R
Conditional ? : R->L
Assignment =+= -=*= /= %= R->L

2.2 INPUT AND OUTPUT FUNCTIONS

The six major input/output functions available in the

standard C library are getchar, putchar, scanf, printf, gets, puts.
These permit the transfer of information between the computer
and the standard i/o devices.

24

motoe

L~ standard output file

Figure 2.2: 1/O functions

Getchar and putchar allow single characters to be
transferred into and out of the computer; scanf and printf permit
the transfer of single characters, numerical values and strings;
gets and puts facilitate the input and output of strings. An
input/output function can be accessed from anywhere within a
program simply by writing the function name, followed by a list
of arguments enclosed by parenthesis. The arguments
represent data items that are sent to the function. C includes a
collection of header files that provide necessary information
(eg. Symbolic constants) in support of the various library
functions. These files are entered into the program via an
#include statement at the beginning of the program. The header
file for standard input/output library functions is called stdio.h.

#include <stdio.h>

main()

{
char c;
clrscr();

¢ = getchar();

25

Memory

putchar(c);
getch();
}

The program begins with the preprocessor statement
#include <stdio.h.. This statement causes the contents of the
header file stdio.h to be included within the program. The
header file to be included within the program. The header file
supplies required information for the library functions used in the
program. The next statement in the program heading main(),
followed by variable declarations. The statement ¢ = getchar()
causes a single character to be entered from the keyboard and
assigned to the variable c. The reference of putchar causes the
value of the character variable c to be displayed.

getchar() — single characters can be entered into the
computer using the C library function getchar(). It returns a
single character from a standard input device (typically the
keyboard). The function does not require any arguments,
though a pair of empty parenthesis must follow the word
getchar(). A reference to the getchar() function is written as,
character variable = getchar(); = where character variable
refers to the previously declared character variable. This
function can also be used to read multicharacter strings by
reading one character at a time within a multipass loop. When
an end-of-file condition is encountered when reading a
character with the getchar function, the value of the symbolic
constant EOF will automatically be returned. This value will be
assigned within the stdio.h file. Typically EOF will be assigned
the value —1. Using a if — else statement the detection and
corrective action for EOF condition can be taken care.

26

putchar() — single characters are displayed using the C
library function putchar(). The function is complementary to the
character input function getchar). The character being
transmitted by the function will normally be represented as a
character-type variable. It must be expressed as an argument
to the function, enclosed in parenthesis, following the word
putchar. A reference to the putchar function is written as,
putchar(character varaiable), where character variable refers to
the previously declared character variable. This function can
also be used to output multicharacter strings by displaying one
character at a time within a multipass loop.

scanf() — the function can be used to enter any
combination of numerical values, single characters and strings.
The function returns the number of data items that have been

successfully entered. The scanf function is written as,

scanf (control string, arg1, arg2, argn),

where control string contains certain formatting
information and arg?, arg2, ... Argn are arguments that
represent the individual data items. The control string comprises
of individual groups of characters, with one character group for
each input data item. Each character group must begin with a
percent sign (%), followed by a conversion character. White
spaces can be used in the control string to separate the groups

" of characters. The conversion characters are:

23 data item is a single character
d data item is a decimal integer
e data item is a floating point value
f data item is a floating point value
g data item is a floating point value

27

h data item is a short integer

i data item is a decimal, hexadecimal or octal

integer
o} data item is a octal integer
s data item is a string followed by a whitespace

character (the null character \0 is automatically
added at the end)

u data item is a unsigned decimal integer

X data item is a hexadecimal integer

Each variable must be preceded by an ampersand (&),as
they indicate the memory addresses.

#include <stdio.h>

main()
{

char a;

int X;
float Y;
double z;

clrscr();
scanf (“%c %d %f %f, &c, &x, &y, &z);
getch();
}

The control string is “%c %d %f %f". It contains
four character groups. The character group %c indicates that
the first argument (item) represe. sharacter. The second

28

character group indicates that the second argument represents
an integer. The third character group indicates that the third
argument represents a decimal integer value. The fourth
character group indicates that the fourth argument represents a
double precision decimal integer value. Each argument is
preceded by & sign. When entering input, they should be
entered with whitespaces in between each argument. If instead
of whitespaces, if we want to enter each data item in a separate

line we include the new line character. The scanf is modified as,
scanf (\n%c”,&c);
scanf (* \n%d”", &x);
scanf (“ \n%f", &y);
scanf (“\n%f", &z);
or
scanf ("\n%c \n%d \n%f \n%f", &c, &x, &y, &z);

The control string can also include the length of the numeric

values entered. If the scanf was modified as,
scanf (“%4d”, &x);

it indicates that the integer number that is entered is of

length 3 or 3 digits. If we have a scanf statement as
scanf (“%4d %4d %4d”, &x1, &x2, &x3);

and an input is give as, 1 2 3 the values are assigned as, x1
=1, x2=2; x3 = 3;

If the data entered is 2345 6783 2312 the values
assigned are x1=2345; X2=6783; x3=2312.

29

If the data entered is 12345 23 123 the values
assigned are x1=1234; x2=23; x3=123 as the
length is 4, in x1 the last digit is ignored.

Other conversion characters include,
| - signed or unsigned long integer or double
precision argument
h - signed or unsigned short integer
L - long double
Eg: #include <stdio.h>
main()
{
short ix, iy;
long Ix, ly;
double dx, dy;

scanf (“%hd, %Id, %If’, &ix, &lx, &dx);
scanf (“%3ho, %7Ix, %15le”", &ix, &lIx, &dx);
}

The first control string indicates first data item to be
assigned to a short decimal integer variable, second to a long
decimal integer and third to a double-precision value. In the
second control string, the first data item is assigned to a short
octal integer of maximum field width of 3 characters, second to
a long hexadecimal integer of width 5 character and third to a
double precision value of max. width 15 characters. For a string
data type, the scanf can be as, char

sname[12];

30

scanf (“%[\n]”, sname);
printf (“%s”, sname);

This format accepts input into sname till a RETURN KEY is

pressed.

printf() - the function can be used to display any
combination of numerical values, single characters and strings.
The scanf function is written as,

scanf (control string, arg1, arg2, argn);

where control string contains certain formatting
information and arg1, arg2, ... Argn are arguments that
represent the individual data items. Te control string comprises
of individual groups of characters, with one character group for
each output data item. Each character group must begin with a
percent sign (%), followed by a conversion character. White
spaces can be used in the control string to separate the groups
of characters.

The conversion characters are:

¢ data item is displayed as a single character

d data item is displayed as a decimal integer

e data item is displayed as a floating point value
f data item is displayed as a floating point value
g data item is displayed as a floating point value
h data item is displayed as a short integer

i data item is displayed as a decimal,
hexadecimal or octal integer
o] data item is disolayed as a octal integer

s data item is displayed as a string followed by a

2 i

whitespace character (the null character \0 is

automatically added at the end)

u data item is displayed as a unsigned decimal
integer
X data item is displayed as a hexadecimal integer

In contrast to the scanf function, the arguments do not
represent memory addresses and therefore they are not
preceded by an ampersand (&).

#include <stdio.h>
main()

{ char sname[10];

int X;
float Y;
double z;

clrscr();

scanf (“%s %d %f %f’, shame, &x, &y, &z);
printf(“(“%s %d %f %f", sname, X, y, 2);
getch();
}

The first control string indicates first data item is to be
assigned to a string variable, second to a decimal integer and
third to a floating point value and the fourth to a double-
precision value. The conversion character %e is different from

%f in that %e displays the output as exponential.
#include <stdio.h>

main()

32

{ double x =5000.0, y = 00.25;
printf (“%f %f %f %f\n\n", X, y, X"y, x/y);
printf (“%e %e %e %e\n\n”, X, y, x*y, x/y);

}
the output is given by

5000.000000 0.002500 12.500000 2000000.0000
5.000000e003 2.500000e-003 1.250000e001
2.000000e+006

A minimum field width can be specified by preceding the
conversion character by an unsigned integer. If the number of
characters in the corresponding data item is less than the
specified field width, then the data item will be preceded by
enough leading blanks to fill the specified field. If the number of
characters in the data item exceeds the specified field width,
however, then additional space will be allocated to the data
item, so that the entire data item will be displayed. This is just
the opposite of the field width indicator in the scanf function
which specifies a maximum field width. The means by which a
maximum field width is specified is called as precision. The
precision of an unsigned integer is always preceded by a
decimal point. If a minimum field width is specified in addition to
the precision then the precision specification follows the field

width specification.
#include <stdio.h>
main()

{
float X = 123.456;

33

printf (“%7f %7.3f %7.1f", X, X, X);

printf (“%12e %12.5e%12.3e\n\n”, X, X, X);

the output is,
123.456000 123.456 123,59

1.234560e+002 1.23456e+002
1.2345e+002

gets() and puts() — facilitate transfer of strings between

the computer and the i/o devices. The string ends when the user
presses the RETURN KEY. The gets and puts function offer
simple alternatives of the use of scanf and printf for reading and
displaying strings.

#include <stdio.h>
main()
{
char x[20];
gets(x);
puts(x);
}
2.3 COMPILING AND RUNNING A C PROGRAM

The stages of developing your C program are as follows:

CREATING THE PROGRAM:

Create a file containing the complete program, such as
the above example. You can use any ordinary editor with which

you are familiar to_create the file. One such editor is textedit

34

available on most UNIX systems. The filename must by
convention end "'.c¢" (full stop, lower case c), e.g. myprog.c or
progtest.c. The contents must obey C syntax. For example,
they might be as in the above example, starting with the line /*
Sample (or a blank line preceding it) and ending with the line }
/* end of program */ (or a blank line following it).

COMPILATION:

There are many C compilers around. The cc being the
default Sun compiler. The GNU C compiler gce is popular and
available for many platforms. PC users may also be familiar with
the Borland bcc compiler. There are also equivalent C++
compilers which are usually denoted by CC (note upper case
CC. For example Sun provides CC and GNU GccC. The GNU
compiler is also denoted by g++ . Other (less comiion) C/C++
compilers exist. All the above compilers operate in essentially
the same manner and share many common command line
options. The Turbo C version on DOS has an inbuilt compiler

that executes the program.

If there are obvious errors in your program (such as
mistypings, misspelling one of the key words or omitting a semi-
colon), the compiler will detect and report them. There may, of
course, still be logical errors that the compiler cannot detect.
You may be telling the computer to do the wrong operations.
When the compiler has successfully digested your program, the
compiled version, or executable, is left in a file called a.out or if
the compiler option -0 is used : the file listed after the -o.

It is more convenient to use a -0 and filename in the

compilation as in

CC -0 program program.c

35

which puts the compiled program into the file program (or
any file you name following the "-0" argument) instead of
putting it in the file a.out .

RUNNING THE PROGRAM:

The next stage is to actually run your executable
program. To run an executable in UNIX, you simply type the
name of the file containing it, in this case program (or a.out).
This executes your program, printing any results to the screen.
At this stage there may be run-time errors, such as division by
zero, or it may become evident that the program has produced
incorrect output.

If so, you must return to edit your program source, and
recompile it, and run it again.

THE C COMPILATION MODEL.:
We will briefly highlight key features of the C Compilation

model here.

‘ Source Code

Prprocessor

!

Carnpiler

+ Assembly Code

Assembler

Libraries

]
* Object Code
Link Editor

¢ Executable Code

Figure 2.3: The C Compilation Model

36

THE PREPROCESSOR:

The Preprocessor accepts source code as input and is

responsible for
e removing comments

« interpreting special preprocessor directives
denoted by #.

For example:

#include -- includes contents of a named file. Files usually

called header files. e.g
#include <math.h> -- standard library maths file.
#include <stdio.h> -- standard library 1/O file

#define -- defines a symbolic name or constant. Macro
substitution.

#define MAX_ARRAY_SIZE 100

C COMPILER:

The C compiler translates source to assembly code. The

source code is received from the preprocessor.
ASSEMBLER:

The assembler creates object code. On a UNIX system you
may see files with a .o suffix (.0BJ on MSDOS) to indicate object

code files.
LINK EDITOR:

If a source file references library functions or functions
defined in other source files the link editor combines these
functions (with main()) to create an executable file. External

Variable references resolved here also.

37

USING LIBRARIES:

C is an extremely small language. Many of the functions of
other languages are not included in C. e.g. No built in 1/O, string
handling or maths functions. C provides functionality through a
rich set function libraries. As a result most C implementations
include standard libraries of functions for many facilities (/0
etc.). For many practical purposes these may be regarded as
being part of C. But they may vary from machine to machine. (¢f
Borland C for a PC to UNIX C).

A programmer can also develop his or her own function
libraries and also include special purpose third party libraries
(e.g. NAG, PHIGS). All libraries (except standard I/O) need to
be explicitly linked in with the - and, possibly, -L compiler
options described above.

#include <time.h>

char *ctime(time_t *clock)
This means that you must have
#include <time.h>

in your file before you call ctime. And that function ctime
takes a pointer to type time_t as an argument, and returns a string

(char*). The library gives description for functions.
ctime() converts a long integer, pointed to by clock, to a

26-character string of the form produced by asctime().

Let us sum up

We have covered about the basic data types in C. We have also

studied in detail the various input and output features in C.

38

Learning Activities

a) Fill in the blanks:

1. The four primitive data types are

and

b) State whether true or false:
1) gets() and getchar are basic output functions in C.

2) Control strings are included to produce formatted output in
printf statements.

3) The symbol & is used to indicate the logical AND operator in
C.

Answers to Learning Activities

a) Fill in the blanks:

1. int, char, float and double.
b) State whether true or false:
1) False.

2) True.

3) False.

Model Questions

1. Explain the primitive data types and their use in C in detail.

2. Write detailed notes on the data input and output statements
in C.

References

1. Gottfried, B.S., “Schaum’s Outline of Theory and Problems
of Programming in C”", Tata McGraw Hill, Delhi, 1995.

2. Kerninghan, B.W. and Ritchi, D.M., The C Programming
Prentice Hall of India, Delhi, 1998

39

Unit-3

Control Structures

Structure

Overview

Learning objectives
3.0 IF-ELSE statements
3.1 SWITCH Statements
3.2 Looping structures in C
3.3 Pointers in C

Learning activities

Let us sum up

Answer to learning activities

References

Overview

This unit is devoted to the detailed study of the various
Control statements available in C.

Learning Objectives

At the end of this unit you will have a clear knowledge on
the ways of representing control over the flow of a C program.

3.0. IF-ELSE STATEMENTS

This is used to decide whether to do something at a

special point, or to decide between two courses of action.

The following test decides whether a student has passed
an exam with a pass mark of 45

40

if (result >= 45)
printf("Pass\n");
else
printf("Fail\n");
It is possible to use the if part without the else.
if (temperature < 0)
print("Frozen\n");

Each version consists of a test, (this is the bracketed
statement following the if). If the test is true then the next
statement is obeyed. If is is false then the statement following
the else is obeyed if present. After this, the rest of the program

continues as normal.

If we wish to have more than one statement following the
if or the else, they should be grouped together between curly
brackets. Such a grouping is called a compound statement or a
block.

if (result >= 45)

{ printf("Passed\n”),
printf("Congratulations\n")

} else

{ printf("Failed\n");
printf("Good luck in the resits\n"):

}

Sometimes we wish to make a multi-way decision base !
on several conditions. The most general way of doing this is by
using the else if variant on the if statement. This works by

cascading several comparisons. As soon as one of these gives

41

a true result, the following statement or block is executed, and
no further comparisons are performed. In the following example
we are awarding grades depending on the exam result.

if (result >=75)
printf("Passed: Grade A\n");
else if (result >= 60)
printf("Passed: Grade B\n");
else if (result >= 45)
printf("Passed: Grade C\n");
else
printf(“Failed\n");

In this example, all comparisons test a single variable
called result. In other cases, each test may involve a different
variable or some combination of tests. The same pattern can be
used with more or fewer else if's, and the final lone else may be
left out. It is up to the programmer to devise the correct structure
for each programming problem.

3.1. SWITCH STATEMENTS

This is another form of the multi way decision. It is well

structured, but can only be used in certain cases where;

. Only one variable is tested, all branches must
depend on the value of that variable. The variable must be
an integral type. (int, long, short or char).

o Each possible value of the variable can control a
single branch. A final, catch all, default branch may

optionally be used to trap all unspecified cases.

42

Hopefully an example will clarify things. This is a function
which converts an integer into a vague description. It is useful
where we are only concerned in measuring a quantity when it is

quite small.
estimate(number)
int number;

/* Estimate a number as none, one, two,

several, many */
{ switch(number) {

case 0:
printf("None\n");
break;

case 1:
printf("One\n”);
break;

case 2 :
printf("Two\n");
break;

case 3 :

case 4:

case 5:
printf("Several\n");
break;

default :

printf("Many\n");

43

break;

Each interesting case is listed with a corresponding
action. The break statement prevents any further statements
from being executed by leaving the switch. Since case 3 and
case 4 have no following break, they continue on allowing the
same action for several values of number.

Both if and switch constructs allow the programmer to
make a selection from a number of possible actions.

The other main type of control statement is the loop.
Loops allow a statement, or block of statements, to be repeated.
Computers are very good at repeating simple tasks many times,

the loop is C's way of achieving this.

Finding the greatest of 3 given numbers.

#include <stdio.h>
main()
{ inta, b, c;
printf (\nEnter the three numbers : *);
scanf (“%d %d %d”, &a, &b, &c);
if((a>b)&& (a>c)
printf (\n a is the greatest’),
else if (b > ¢)
printf (\n b is the greatest”);
else
printf (\n ¢ is the greatest’);

getch(); }

44

Finding the Area of a circle or a rectangle (if ans = ‘C’ area
of circle else area of rectangle)

#include <stdio.h>
#define Pl 3.14
main()
{
float r, area, volume;
char ans;
printf (\nEnter radius of the circle : “);
scanf (“%f”, &r);
printf (\nWhat do want to find? Area or Volume.
Press ‘A’ or ‘V”);
scanf (“%c”, &ans);
if (ans == ‘A’) {
area=Pl*r*r;
printf (\nArea = %f”, area);}
else if (ans == ‘V’) {
volume =Pl *4/3 *r*r* r;
printf (\nVolume = %f”,volume); }
}
3.2 LOOPING STRUCTURES IN C

The statements so far discussed were executed only
once in our program. But in practice we require the repeated
execution of certain statements to give us the right results. Thus

we need

45

1. instructions to be executed more than once
2. tests to determine if certain conditions are true or false

Looping is a group of instructions to be executed
repeatedly, until some logical condition has been satisfied. The
number of repetitions could be known (eg. the details of 10
students) or unknown (a group of instructions that are repeated
until the logical condition becomes true).

CONDITIONAL EXECUTION:

Programs require that a logical test be carried out at
some particular point, within the program. An action will then be
carried out whose exact nature depends upon the outcome of
the logical test. We need to form logical expressions that are
either true or false. We use the relational operators (<. <=, >,
>=) and the equality operators (= =, !=) along with operands. In
addition to these the logical connectives && (AND), || (OR) and
the unary operator (1) are used.

Eg:
counter <= 200 (cnt <=200) && (c == '#)
sqgrt (b+c) > 0.09
(color = ='R’) || (color = = ‘B’)
ans =0 (ans > 0) && ((ans <5) || (ans !=0))
balance >= income
! ((pay >= 1000) && (status = = ‘S’))
c>1
letter != ‘a’

Since the equality operator has higher precedence than
logical operator parenthesis can be avoided in some places.

46

While statement:
while <expression>
statements

The included statements will be executed repeatedly as
long as the value of the expression is not zero (that is the
statement is true). The statements could be simple or
compound. expression is usually a logical expression that is
either true or false (false 0, true is non zero value).

main()

{

int digit = 0;

while (digit <= 9) {

printf (“Y%d\n”, digit);
digit++; }
}

The loop is run 10 times resulting in 10 consecutive lines of
output. The printf statement could be rewritten as,

printf (“%d\n”, digit++);

while (character is not end of file signal, output the
character just read, get a new character)

#include <stdio.h>
#define EOF 0
main()

{

47

int c;
¢ = getchar();
while (c I= EOF) {
putchar (c);
¢ = getchar();}
}

c is declared to be an int and not as a character, so that it
can hold the value which the getchar() function returns. EOF will

be either 0 or —1, and they thus define as
#define EOF 0 or
#define EOF -1
#include <stdio.h>
#define EOF 0
main()
{ intc;
while (((c = getchar()) I= EOF)

putchar (c); (or)
printf (“%c”, toupper (c));

}
Do - while statement:

This is very similar to the while loop except that the test
occurs at the end of the loop body. This guarantees that the
loop is executed at least once before continuing. Such a setup
is frequently used where data is to be read. The test then
verifies the data, and loops back to read again if it was

unacceptable.

48

do
{ printf("Enter 1 for yes, 0 for no :");
scanf("%d", &input_value);
} while (input_value I= 1 && input_value = 0)
For statement:

The for loop works well where the number of iterations of
the loop is known before the loop is entered. The head of the
loop consists of three parts separated by semicolons.

» The first is an expression that specifies an initial value for
an index. (parameter that controls the looping action —

assignment exp.)

» The second is a test (determines whether or not the loop
is continued) the loop is exited when this returns false
(logical exp.)

» The third is a index to be modified at the end of each
pass. This is usually an increment of the loop counter

(unary or assignment exp.)
Syntax is,
for (exp1; exp2; exp3)

#include <stdijo.h>

main()
{ int digit;
for (digit = O; digit <= 9; digit++)
printf (“%d\n”, digit);
}

Any one of the expressions could be omitted,

49

int digit = 0;
for (; digit <= 9; digit)
printf (“%d\n”, digit++);
Below given example is a function which calculates the

average of the numbers stored in an array. The function takes

the array and the number of elements as arguments.
float average(float array[], int count)
{ float total = 0.0;
inti;
for(i = 0; i < count; i++)
total += array[i];
return(total / count);

}

The for loop ensures that the correct number of array
elements are added up before calculating the average. The
three statements at the head of a for loop usually do just one
thing each, however any of them can be left blank. A blank first
or last statement will mean no initialisation or running increment.
A blank comparison statement will always be treated as true.
This will cause the loop to run indefinitely unless interrupted by
some other means. This might be a return or a break statement.

it is also possible to squeeze several statements into the first
or third position, separating them with commas. This allows a
loop with more than one controlling variable. The example
below illustrates the definition of such a loop, with variables hi
and lo starting at 100 and O respectively and converging.

for (hi = 100, lo = 0; hi >= lo; hi--, lo++)

50

The for loop is extremely flexible and allows many types of
program behaviour to be specified simply and quickly.

Nested loops:

» One loop should be completely embedded within the
other

» There can be no overlap

» Each loop must be controlled by a different index
The break Statement:

We have already met break in the discussion of the
switch statement. It is used to exit from a loop or a switch,
control passing to the first statement beyond the loop or a
switch. With loops, break can be used to force an early exit from
the loop, or to implement a loop with a test to exit in the middle
of the loop body. A break within a loop should aiways be
protected within an if statement which provides the test to

control the exit condition.
The continue Statement:

This is similar to break but is encountered less frequently.
It only works within loops where its effect is to force an

immediate jump to the loop control statement.
» In a while loop, jump to the test statement.
» In a do while loop, jump to the test statement.
» In a for loop, jump to the test, and perform the iteration.

Like a break, continue should be protected by an if

statement. You are unlikely to use it very often.

do

51

scanf (“\n%f", &x);
if (x <0) {
printf (‘ERROR — Enter non-negative value”);
continue; '}
} while (x <= 100);
The goto Statement:

C has a goto statement which permits unstructured
jumps to be made. It is used to alter the normal sequence of
program execution by transferring control to some other part of
the program.

gofto label;

where label is an identifier used to label the target
statement to which control will be transferred. Control may be
transferred to any other statement within the program.

scanf (“%f", &x);
while (x <= 100) {

..... if (x < 0) goto errorcheck;

.......... }
errorcheck : { printf (\nERROR - Enter the value for x”);
getch(); }

goto statement is used,

» To branch around statements or a group of

statements under certain conditions

» Jumping to the end of a loop under certain
conditions, thus bypassing the remainder of the
loop during current pass

52

» Jumping completely out of the loop under certain
conditions, thus terminating execution of the loop

GOTO statement is not recommended, as
- branching can be done by if-else
- jumping to the end by continue
- jumping out of the loop by break

Useage of goto statement does not encourage structured

programming.
The comma operator:

It is used primarily in conjunction with the for statement. It
permits 2 different expressions to appear in situations where

only one expression could ordinarily be used.
for (exp1a, exp1b; exp2; exp3a, exp3b)

eg. search for palindromes

3.3 POINTERS IN C

Pointers are data items in memory. It is a variable which
contains the address of another variable. Each variable when
declared, is allocated a specific area in the computer's memory.
The operating system takes care of the address of the variable
and does the necessary conversion each time the variable is
accessed by the user. The declaration int a = 10; assigns a cell

called a and stores the value 10 to it.

a
10 |
inta=10;
int *b;
b= &a;

53

The above declaration means that a is an integer with value
10. b contains the address of an integer. The variable b points
to an integer and thus is a pointer variable. It points in the
direction of the integer a and has the address of a. The ‘&’ sign
is called as the address operator and ‘' * ' is called as the
indirection operator.

b

Address of a

Let us sum up

We have covered about the basic branching and control
structures in C.

Learning Activities
a) Fill in the blanks:

1. The fundamental branching structures in C are
and

2. The FOR loop has to have atleast
parameters.

b) State whether true or false:
1) The usage of GOTO statements is efficient.

2) The working of while statement and do-while are one and
the same.

Answers to Learning Activities
a) Fill in the blanks:

1) if and switch statements

54

2) One.
b) State whether true or false:
1) False.

2) False.

Model Questions

1. What are compilers? Show the compilation process of a C

program.

2. What are library function? How are they useful in C

programs?
3. Describe in detail the IF-ELSE construct in C.
4. What are the types of branching statements available in C?

5. Write detailed notes on the various looping features available
in C.

References

1. Kamthane, “Programming with ANSI and Turbo C, Pearson
Education, Delhi, 2002.

2. Al Kelley, lya Pohl.; “A Book on C”, Pearson Education,
Delhi, 2001.

55

Block 2: Introduction

This block will teach you about the Structured
Programming concepts in C. This block is divided into three

units.

Unit 4: This unit deals with the concepts of Arrays, Structures
and Unions in C and has been discussed in detail.

Unit 5: This unit deals with the different storage classes in C

and the use of functions in C programming.

Unit 6: This unit deals on a detailed study on File handling
features in C.

56

Unit-4

ARRAYS & STRUCTURES

Structure
Overview
Learning Objectives
4.0 Concept of Arrays in C
4.1 Structures
4.2 Unions
4.3 Bit fields
Let us sum up
Answer to learning activities

References

Overview

This unit is devoted to the study of derived data types
such as arrays and structures in C and has been discussed in

detail.

Learning Objectives

At the end of this unit you will have a clear understanding

on the concepts of arrays and structures.

4.0 CONCEPT OF ARRAYSIN C

An array is a set of variables, represented by a single

name. The individual variables are called elements and are
identified by index numbers. The following example declares

an array with ten elements.

57

int x[10];

The first element in the array has an index number of
zero. Therefore, the above array has ten elements, indexed

from zero to nine.
ACCESSING THE ELEMENTS

To access an individual element in the array, the index
number follows the variable name in square brackets. The
variable can then be treated like any other variable in C. The
following example assigns a value to the first element in the
array.

x[0] = 16;

The following example prints the value of the third element

in an array.
printf("%d\n", x[2]);

The following example uses the scanf function to read a
value from the keyboard into the last element of an array with

ten elements.
scanf ("%$d", &x[9]):

INITIALISING ARRAY ELEMENTS

Arrays can be initialised like any other variables by
assignment. As an array contains more than one value, the
individual values are placed in curly braces, and seperated
with commas. The following example initialeses a ten
dimensional array with the first ten values of the three times
table.

intx[10] = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30},

This saves assigning the values individually as in the

following example.

58

int x[10];
x[0] = 3;

x[1] = 6;

x[(2] = 9;

x[3]=12;
x[4] = 15;
x[5] = 18
x[6] = 21;
X[7] = 24;
x[8] = 27;
x[9] = 30;

LOOPING THROUGH AN ARRAY:

As the array is indexed sequentially, we can use the for
loop to display all the values of an array. The following example

displays all the values of an array.

#include <stdio.h>

int main()

{
int x[10];
int counter;
/* Randomise the random number generator */
srand((unsigned)time(NULL));
/* Assign random values to the variable */
for (counter=0; counter<10; counter++)

x[counter] = rand();

59

/* Display the contents of the array */
for (counter=0; counter<10; counter++)

printf("element %d has the value %d\n", counter,
x[counter]);

return 0;
}
MULTIDIMENSIONAL ARRAYS:

An array can have more than one dimension. By allowing the
array to have more than one dimension provides greater
flexibility. For example, spreadsheets are built on a two
dimensional array; an array for the rows, and an array for the
columns. The following example uses a two dimensional array
with two rows, each containing five columns.

#include <stdio.h>
int main()
{
/* Declare a 2 x 5 multidimensional array */
int x[2][5] = { {1, 2, 3, 4, 5},
{2, 4,68 10} };
int row, column;
/* Display the rows */
for (row=0; row<2; row++)
{
/* Display the columns */
for (column=0; column<5; column++)

printf("%ad\t", x[row]|)

60

putchar(\n');
}

return 0;}
CHARACTER ARRAYS:

A string is an list (or string) of characters stored
contiguously with a marker to indicate the end of the string.
Since the characters of a string are stored contiguously, we can
easily implement a string by using an array of characters if we
keep track of the number of elements stored in the array.
However, common operations on strings include breaking them
up into parts (called substrings), joining them together to create
new strings, replacing parts of them with other strings, etc.
There must be some way of detecting the size of a current valid
string stored in an array of characters.

In C, a string of characters is stored in successive
elements of a character array and terminated by the NULL
character. For example, the string "Hello" is stored in a character
array, msgj[], as follows:

char msg[SIZE];
msg[0] = 'H',
msg(1] ='¢",
msg[2] = 'I';
msg[3] =
msg[4] = 'o;
msg[5] = "0/,

The NULL character is written using the escape
sequence ' \0'. The ASCII value of NULL is 0, and NULL is

61

defined as a macro to be 0 in stdio.h; so programs can use the
symbol, NULL, in expressions if the header file is included. The
remaining elements in the array after the NULL may have any
garbage values. When the string is retrieved, it will be retrieved
starting at index 0 and succeeding characters are obtained by
incrementing the index until the first NULL character is reached
signaling the end of the string. Figure 4.1 shows a string as it is
stored in memory. Note, string constants, such as "Hello" are
automatically terminated by NULL by the compiler.

‘)\01 |

io'l

Figure 4.1: String stored in Memory as a Array

4.1 STRUCTURES

A structure is a collection of variables under a single

name. These variables can be of different types, and each has a
name which is used to select it from the structure. A structure is
a convenient way of grouping several pieces of related
information together.

A structure can be defined as a new named type, thus
extending the number of available types. It can use other
structures, arrays or pointers as some of its members, though
this can get complicated unless you are careful.

DEFINING A STRUCTURE

A structure type is usually defined near to the start of a
file using a typedef statement. typedef defines and names a new
type, allowing its use throughout the program. typedefs usually
occur just after the #define and #include statements in a file.

62

Here is an example structure definition.
typedef struct {
char name[64];
char course[128];
int age;
int year;
} student;

This defines a new type student variables of type student can

be declared as follows.
student st_rec;
Notice how similar this is to declaring an int or float.

The variable name is st_rec, it has members called name,

course, age and year.
ACCESSING MEMBERS OF A STRUCTURE:

Each member of a structure can be used just like a
normal variable, but its name will be a bit longer. To return to the
examples above, member name of structure st_rec will behave
just like a normal array of char, however we refer to it by the

name
st_rec.name

Here the dot is an operator which selects a member from a

structure.

Where we have a pointer to a structure we could
dereference the pointer and then use dot as a member selector.
This method is a little clumsy to type. Since selecting a member
from a structure pointer happens frequently, it has its own
operator -> which acts as follows. Assume that st_ptr is a pointer

63

to a structure of type student we would refer to the name
member as

st_ptr -> name
STRUCTURES AS FUNCTION ARGUMENTS:

A structure can be passed as a function argument just
like any other variable. This raises a few practical issues. Where
we wish to modify the value of members of the structure, we
must pass a pointer to that structure. This is just like passing a
pointer to an int type argument whose value we wish to change.

If we are only interested in one member of a structure, it
is probably simpler to just pass that member. This will make for
a simpler function, which is easier to re-use. Of course if we
wish to change the value of that member, we should pass a
pointer to it.

When a structure is passed as an argument, each
member of the structure is copied. This can prove expensive
where structures are large or functions are called frequently.
Passing and working with pointers to large structures may be

more efficient in such cases.
FURTHER USES OF STRUCTURES:

As we have seen, a structure is a good way of storing related
data together. It is also a good way of representing certain types
of information. Complex numbers in mathematics inhabit a two
dimensional plane (stretching in real and imaginary directions).
These could easily be represented here by

typedef struct {
double real;

double imag;

64

} complex;

doubles have been used for each field because their range is
greater than floats and because the majority of mathematical
library functions deal with doubles by default.

In a similar way, structures could be used to hold the
locations of points in multi-dimensional space. Mathematicians
and engineers might see a storage efficient implementation for
sparse arrays here. Apart from holding data, structures can be
used as members of other structures. Arrays of structures are
possible, and are a good way of storing lists of data with regular

fields, such as databases.

Another possibility is a structure whose fields include pointers to
its own type. These can be used to build chains (programmers
call these linked lists), trees or other connected structures.
These are rather daunting to the new programmer, so we won't

deal with them here.

4.2 UNIONS

Unions are the same as structures, except that, where

you would have written struct before, now you write union.
Everything works the same way, but with one big exception. In a
structure, the members are allocated separate consecutive
chunks of storage. In a union, every member is allocated the
same piece of storage. Sometimes you want a structure to
contain different values of different types at different times but to
conserve space as much as possible. Using a union, achieves

this. Here's an example:
#include <stdio.h>
#include <stdlib.h>

main(){

65

union {
float u_f;
int u_i;

}var;

var.u_f = 23.5;
printf("value is %f\n", var.u_f);
var.u_i = 5;
printf("value is %d\n", var.u_i);
exit(EXIT_SUCCESS);

}

If the example had, say, put a float into the union and then
extracted it as an int, a strange value would have resulted. The
two types are almost certainly not only stored differently, but of
different lengths. The int retrieved would probably be the low-
order bits of the machine representation of a float, and might
easily be made up of part of the mantissa of the float plus a
piece of the exponent. The Standard says that if you do this, the
behaviour is implementation defined (not undefined). The
behaviour is defined by the Standard in one case: if some of the
members of a union are structures with a ‘common initial
sequence’ (the first members of each structure have compatible
type and in the case of bitfields are the same length), and the
union currently contains one of them, then the common initial
part of each can be used interchangeably.

66

The most common way of remembering what is in a union is
to embed it in a structure, with another member of the structure
used to indicate the type of thing currently in the union. Here is
how it might be used:

#include <stdio.h>

#include <stdlib.h>

/* code for types in union */
#define FLOAT_TYPE 1
#define CHAR_TYPE 2
#define INT_TYPE 3

struct var_type{
int type_in_union;
union{
float un_float;
char un_char,
int un_int;
jvt_un;

}var_type;

void

print_vt(void){

67

switch(var_type.type_in_union){

default:
printf("Unknown type in union\n");
break;

case FLOAT_TYPE:
printf("%f\n", var_type.vt_un.un_float);
break;

case CHAR_TYPE:
printf("%c\n", var_type.vt_un.un_char);
break;

case INT_TYPE:
printf("%d\n", var_type.vt_un.un_int);

break;

}

main(){
var_type.type_in_union = FLOAT_TYPE,;
var_type.vt_un.un_float = 3.5;

print_vit();

var_type.type_in_union = CHAR_TYPE;

var_type.vt_un.un_char = 'a’;

68

print_vt();
exit(EXIT_SUCCESS);
}

That also demonstrates how the dot notation is used to

access structures or unions inside other structures or unions.

4.3 BIT FIELDS

They can only be declared inside a structure or a union,
and allow you to specify some very small objects of a given
number of bits in length. Their usefulness is limited and they
aren't seen in many programs. This example should help to
make things clear:

struct {
/* field 4 bits wide */
unsigned field1 :4,
/*
* unnamed 3 bit field
* unnamed fields allow for padding
*/
unsigned 3;
[
* one-bit field
* can only be 0 or -1 in two's complement!
*
signed field2 :1;
/* align next field on a storage unit */

unsigned 0

69

unsigned field3 :6;
Mull_of_fields;

Each field is accessed and manipulated as if it were an
ordinary member of a structure. The keywords signed and
unsigned mean what you would expect, except that it is
interesting to note that a 1-bit signed field on a two's
complement machine can only take the values 0 or -1. The
declarations are permitted to include the const and volatile
qualifiers.

The main use of bitfields is either to allow tight packing of
data or to be able to specify the fields within some externally
produced data files. C gives no guarantee of the ordering of
fields within machine words, so if you do use them for the latter
reason, you program will not only be non-portable, it will be
compiler-dependent too. The Standard says that fields are
packed into ‘storage units’, which are typically machine words.
The packing order, and whether or not a bitfield may cross a
storage unit boundary, are implementation defined. To force
alignment to a storage unit boundary, a zero width field is used
before the one that you want to have aligned.

Bit fields can require a surprising amount of run-time
code to manipulate these things and you can end up using more
space than they save. Bit fields do not have addresses—you
can't have pointers to them or arrays of them.

Let us sum up

We have covered about the concepts arrays and
structures in C programs.

70

Learning Activities

a) Fill in the blanks:

1. An array is a collection of the type of data

elements.
b) State whether true or false:

2. Structure elements are accessed using the dot operator.
(True / False)

Answers to Learning Activities

a) Fill in the blanks:
3. Same.
a) State whether true or false:

1. True.

Model Questions

1. Explain in detail the concept of arrays
2. What are structures? How do they differ from arrays?

3. Write a sample program to show the passing of arrays to
functions.

References

1. Gottfried, B.S., “Schaum’s Outline of Theory and Problems of
Programming in C”, Tata McGraw Hill, Delhi, 1995.

2. Kerninghan, B.W. and Ritchi, D.M., The C Programming
Prentice Hall of India, Delhi, 1998.

71

Unit-5

STORAGE CLASSES AND FUNCTIONS

Structure
Overview
Learning objectives
5.0 Storage Classes in C
5.1 Functions
5.2 Implementation of Pointers in functions
5.3 Passing Arrays to Functions
5.4 Passing Functions to Functions
5.5 Passing Pointers to Functions
Let us sum up
Answer to learning activities

References

Overview
This unit is devoted to the detailed study of the various

storage classes supported by C. It covers the major usage of

function calls in C.

Learning Objectives

At the end of this unit you will have a clear knowledge on
the various storage classes in C and the usage of function class

to provide modular programming in C.

72

5.0 STORAGE CLASSESIN C

Storage classes refers to the permanence of a variable and
its scope within the program. It is thus the portion of the program
over which the variable is recognized.

Register - This is used to define local variables that should
be stored in a register instead of RAM. This means that the
variable has a maximum size equal to the register size (usually
one word) and cant have the unary '&' operator applied to it (as

it does not have a memory location).

{

register int Miles;

}

Register should only be used for variables that require quick
access - such as counters. It should also be noted that defining
'register' goes not mean that the variable will be stored in a
register. It means that it MIGHT be stored in a register -

depending on hardware and implementation restrictions.

Automatic — This variable is declared within a function. It is
local to that function. The scope of the variable is confined to
that function. Another variable of the same name can be defined
in a different function as each of them are independent. The
word auto could be added before the variable name but it is

optional. When we exit from the function the value is lost.

External — This variable is not confined to any function. The
scope extends from the point of definition through the remainder
of the program. It is recognized globally. It can be accessed by
any function. The value set in one function can be used in
another. Syntax - extern <variable name>

73

Static — These variables are defined within individual
functions. Their functionality is the same as automatic variables.
The value assigned to them is retained till the life of the program
is over. The syntax is given as, static <variable name>
<value> static inta = 10;

5.1 FUNCTIONS

Function is a self- contained program segment that
carries out some specific, well-defined task. Every C program
consists of one or more functions. main() is also a function.
Program execution will always begin by carrying out the
instructions in main(). A function

- Will carry out its intended action whenever it is
accessed

-+ Will process information passed to it from the
calling portion of the program and return a single value.
Information will be passed to the function via special

identifiers called arguments or parameters.
A function has three principal components.

- The first line — contains the type specification of
the value returned by the function, followed by the
function name, and optionally a set of arguments
separated by commas and enclosed in parenthesis.
Empty parenthesis pair must follow the function name if
the definition does not include any argument.

data-type name (formal arg1, formal arg2,
.............. formal argn)

where data-type represents the data type of the value
that is returned. Name is the function name. The formal

arguments allow information to be transferred from the

74

calling portion of the function. The corresponding
arguments in the function reference are called actual
arguments as they define the information actually being

transferred.

- Argument declarations — all formal arguments
must be declared at this point in the function. Each
formal argument must have the same data-type as its

corresponding actual argument.

- Action to be taken by the function — compound

statements referred as the body of the function.

The return statement causes control to be returned to the
point from which the function was accessed.

return expression;

The use of user—deﬁhed functions allow a large program to
be broken down into a number of smaller, self-contained
components, each of which has some unique, identifiable

purpose.

- Certain instructions could be accessed repeatedly
from several different places within the program. The
repeated instructions are placed within a single function,
which can then be accessed whenever it is needed.

- A different set of data can be transferred to the

function each time it is accessed.
- Program is easier to write and debug.
#include <stdio.h>
#define PI 3.14
void areaperi (float r);

main()

75

{ floatr,
clrser();
printf (“\nEnter radius of the circle : “);
scanf (“%f”, &r);
areaperi (r);
getch();
/
void areaperi (float r)
{
float area, volume;
area =PI *r *r;
printf (“\nArea = %f”, area);
volume = Pl ¥4/3 *r *r* r;
printf (“\nVolume = %f”,volume);

return,

5.2 IMPLEMENTATION OF POINTERS IN FUNCTIONS

Passing pointers to functions can be done in two ways,

CALL BY VALUE:

In call-by-value, the argument expression is evaluated, and
the resulting value is bound to the corresponding variable in the
function (usually by capture-avoiding substitution or by copying
the value into a new memory region). If the function or
procedure is able to assign values to its parameters, only the
local copy is assigned -- that is, anything passed into a function

call is unchanged in the caller's scope when the function returns.

#include <stdio.h>

76

void modify (int a);
main()
{ int a;
printf (\nEnter value for a : “);
scanf (“%d”, &a);
modify (a);
printf (\nValue of a in Main is : %d “, a);
getch();
}
void modify (int a)
{
a=a*100;
printf (\nValue of a in function is : %d", a);
return;

}

The value of a is that a was modified has to be
returned to the main to view the altered value.

CALL BY REFERENCE:

In call-by-reference evaluation, a function is passed an
implicit reference to its argument rather than the argument value
itself. If the function is able to modify such a parameter, then any
changes it makes will be visible to the caller as well. If the
argument expression is an L-value, its address is used.
Otherwise, a temporary object is constructed by the caller and a
reference to this object is passed; the object is then discarded
when the function returns.

17

#include <stdio.h>
void modify (int *a)!
main()
{ int a;
printf (\nEnter value for a : “);
scanf (“%d”, &a);
modify (&a);
printf (\nValue of a in Main is : %d “, a);
getch(),
}
void modify (int *a)
{
a ="a 100;
printf (\nValue of a in function is : %d”, *a);
return;
}

5.3 PASSING ARRAYS TO FUNCTIONS
Let us illustrate the utility of passing arrays to functions by

means of an example that reads an array and prints a list of
scores using functional modules. The function, read_intaray(),
reads scores and stores them, returning the number of scores
read. The function, print_intaray(), prints the contents of the
array. The refined algorithm for main() can be written as:

print title, etc.
n = read_intaray(exam_scores, MAX);

print_intaray(exam_scores, n);

78

Here we have passed an array, exam_scores, and a
constant, MAX (specifying the maximum size of the proposed
list), to read_intarray() and expect it to return the number of
scores placed in the array. Similarly, when we print the array
using print_intarray, we give it the array to be printed and a
count of elements it contains. We know that in order for a called
function to access objects in the calling function (such as to
store elements in an array) we must use indirect access, i.e.
pointers. So, read_intaray() must indirectly access the array,
exam_scores, in main(). One unique feature of C is that array
access is always indirect; thus making it particularly easy for a
called function to indirectly access elements of an array and

store or retrieve values.
A sample program for this is given by,
#include <stdo.h>
#define MAX 10
int read_intarray(int scores[], int lim);
void print_intarray (int scores[], int lim);
main()
{

int n, exam_scores[MAX];

printf (“*** LIST OF EXAM SCORES ***\n\n);
n = read_intarray(exam_scores, MAX);

print_intarray (exam_scores, n);

}

79

/* Function to read scores */

int read_intarray(int scores(], int lim)

{

int n, count = 0;

printf (“Type scores, EOF to quit\n”);

while ((count < lim) && (scanf(“%d”, &n) != EOF))

scores [count] = n;
count++,

return count;

}

/*Function to print scores */

void print_intarray (int scores(], int lim)

{
int i;
printf (“\n *** EXAM SCORES ***\n\n");
for (i = 0; i < lim; i++)
printf (“%d\n”, scoresli]);
}

5.4 PASSING FUNCTIONS TO FUNCTIONS

In computer programs, functions form the powerful

building blocks that allow developers to break code down into

simple, more easily managed steps, as well as let programmers

break programs into reusable parts. As a nod to the wonderful

function, in this article Il demonstrate how to craft new

template-based functions at runtime and explain how to build

80

furticens et cen be configured at runtime using function

Ul

r

caraoetec s A practical use of nameless functions is thar of

buiding iutons to pass as arguments to other functions.

A exalnphe code iz given below:

int square(int x)

{

st X ¥ X

Nots al due o sl ey work if C had a function
C3tted map which vorked with integer functions.

oot ot s fargely theoretical. Also remember

~

Yoo foooeen know the size of the arrays, so you have

oouy. Also, list_of _squares has to be passed

<+ a parameter in C.

map(square, my_test_data, list_of_squares, 6);

printf('();

81

for(i=0; i<6; i++)
{
printf("%d ", list
}
printi(")\n"),
}
5.5 PASSING POINTERS T FUNCTIONS

A useful technique s e wowv to have woind e 1o
functions. Their declaratior: -« casy: vrie the dect oo o5 4

would be for the function, s.:
int func(int a, float b):

and simply put brackets arcur « o neos nd a” oo rors ot i
that declares the pointer. Becai: « of ~=rodence, 1 oou dod
parenthesize the name, you de. @+ = “nction o gning

pointer:
/* function returning pointc

int *func(int a, float b);

/* pointer to function returning int */
int (*func)(int a, float b);

Once you've got the pointer, you car i« ~un the address
of the right sort of function just by using = =~ like > 813
function name is turned into an address when @+ oo L an

exprassion. You can call the function using one o two {77
(*func)(1,2);

>orvy

82

func(1,2);

Here's o simpie exampis.
#irclude «<stdic.h>
#include <stdlib.h>
void func(int);
main(){

void (*fp)(int);
fp = func;
(*fp)(1);
fp(2);
exit(EXIT_SUCCESS);
}
void func(int arg){
printf("%d\n", arg);
}

if you like writing finite state machines, you might like to
know that you can have an array of pointers to functions, with
declaration and use like this:

void (*fparr([])(int, float) = {
/* initializers */ b
/* then call one */

fparr[5](1, 3.4);

Let us sum up

We have covered about the basic data types in C. We have also
studied in detail the various input and output features in C.

83

Lgarnm—g Activities
a} Fili in the blanks:

1) The automatic storage class I1s similar to that of _

2) The two types of parameters are and

b) State whether true or false.
1. In C array index by default starts with 0. (True / False).

2. A hunclion call has four principal compenents. (True/False).

)i_r_\swers to Learning Activities
a) Fillin the bianks

1) Static class.

2) Formal, actual

b) State whether true or false.
1. True.

2. False.

Model Questions

1. Explain about the various storage classes in C

2. Write detailed nates on call by vaic s ard « ¥ by ~feran e

References

1. Gottfried, B.S., “Schaum’s Ouiline of Theoiy and
Problems of Programming in C" Tata McGraw hili, Dethi,
1995.

2. Kerninghan, B.W. and Ritchi, D.M., The C Programming
Prentice Hall of India, Delhi, 1698.

84

RTES
SR

!

it

!
figm
« E
<7

FILE HANDLING IN C

Structure
Overview
Learning objectives
6.0 Text Files
6.1 Binary Files
Let us sum up
Answer to learning activities

References

Overview

This unit is devoted to the detailed study of the various

File Handling features available in C.

Learning Objectives

At the end of this unit you will have a clear knowledge on

the ways of representing file structures in C program.

6.0 TEXT FILES

Text files in C are straightforward and easy to understand.

All text file functions and types in C come from the stdio library.

When you need text /O in a C program, and you need only
one source for input information and one sink for output
information, you can rely on stdin (standard in) and stdout
(standard out). You can then use input and output redirection at
the command line to move different information streams through
the program. There are six different [/O commands in <stdio.h>

that you can use with stdin and stdout:

85

printf - prints formatted output to stdout

scanf - reads formatted input from stdin

-puts - prints a string to stdout

gets - reads a string from stdin
putc - prints a character to stdout

getc, getchar - reads a character from stdin

The advantage of stdin and stdout is that they are easy to

use. Likewise, the ability to redirect 1/O is very powerful. For

example, maybe you want to create a program that reads from

stdin and counts the number of characters:

#include <stdio.h>

#include <string.h>

void main()

{

char s[1000];

int count=0;

while (gets(s))

count += strien(s);

printf("%d\n",count);

}

Enter this code and run it. It waits for input from stdin, so

type a few lines. When you are done, press CTRL-D to signal

end-of-file (eof). The gets function reads a line until it detects

eof, then returns a 0 so that the while loop ends. When you

press CTRL-D, you see a count of the number of characters in

86

stdoc! Ohs s} LAt geds of yodr compiler's

doaciizakaliGor 9 gt aore aban the gets fancton)

MNOW, SLopese 00 e d 10 count (o chotsnters L a file If

yoo cosnbilad the Biyeror 10 on axecutable narma.. XXX, you can

By thiss T ‘10Wil'i!:f
X 4% Hoename

fistead 9 accepting pui from the keybeard, the conteniy of
b file oaucad HHoname will be used instead. Yoo can achieve

the same res it voihg pipes
cat = filerprae | xxx
You < on also rednect the ouintd g e
X4 < Hlenams > aut

L O @ plor og the oheragter cotrs posluess by the

DFOLI Ay il namaa out.

Sometimes, you 1eed to use a text file di (b o example
you might naed to open a specific fite and reas © oy or wiite «
. You might waert 10 manage several streams o riput o oulput
or create 2 program bke a text editer that can oy aod v
iata or corfiguration fles on comimand. In fhat case, us T

ext file funchons i stdio.
. fopiea cpers a text i
s g 4 A, e
5 £ ‘ ¢ and-of-ile nackerin g e
. iprisdf - poots formaded o tput 1© 3 G
® focant - reads formatad v frenn g e
N fnuts - pands a sining o a file

° fgets - reads a siring from a fle

° fputc - prints a character to a file
o fgetc - reads a character from a file
TEXT FILES: OPENING

You use fopen to open a file. it opens a fiie for » spacified
mode (the three most common are r, w, and «.. " 1o, e,
and append). It then returns a file pointer that 7u use (o access
the file. For example, suppose you want to opei: 2 file and write

the numbers 1 to 10 in it. You could use the fo!lswing - s
#include <stdio.h>

#define MAX 10

int main()
{
FILE *f;
int x;
f=fopen("out","w");
if (If)
return 1;
for(x=1; x<=MAX; x++)
fprintf(f,"%d\n",x);
fclose(f);
return O;

}

The fopen statement here opens a file named out with the w
mode. This is a destructive write mode, which means that if out

does not exist it is created, but if it does exist it is destroyed and

88

a new file is created in its place. The fopen command returns a
pointer to the file, which is stored in the variable f. This variable
i= used 1o refer to the file. If the file cannot be opened for some

razsn, Fwill contain NUH L
AN FUNCTION RETURN VALUES:

This program is the first program in this series that returns an
arre- value from the main program If the fopen comimand fails, f
wilh contair: & NULL value {a zero). We test for that error with the
if statement. The if statement looks at the True/False value of
the variable f. Remember that in C, 0 is False and anything else
is true. So if there were an error opening the file, f would contain
zero, which is False. The ! is the NOT operator. !t inverts a
Boolean value. So the if statement could have been written like
this:

if (f == 0)
That is equivalent. However, if (If) is more common.

if there is a file error, we return a 1 from the main function. In
UNIX, you can actually test for this value on the command line.

See the shell documentation for details.

The fprintf statement should look very familiar: It is just like
printf but uses the file pointer as its first parameter. The fclose

statement closes the file when you are done.
TEXT FILES: READING

To read a file, open it with r mode. In general, it is not a good
idea to use fscanf for reading: Unless the file is perfectly
formatted, fscanf will not handle it correctly. Instead, use fgets
to read in each line and then parse out the pieces you need.

The following code demonstrates the process of reading a

file and dumping its contents to the screen:

89

#include <stdio.h>

int 1main()

{
FILE *f;

- nar s[1000];

=fupen(infile","r");

it (!f)
return 1;

while (fgets(s,1000,f)!=NULL)
printf("%s",s),

fclose(f);

return 0;

}

The faets statement mcwuns o v L value at the end-of-file
marker. It reads a i (up 1o 1,900 Jhorsciers in this case) and
then prints it to stc woues ton tne caeat statement does not
nclude \n in the ionnat stiiug bevause fgets adds \n o the end
of each line it reads. Thus, you can tell if a line s not complete in
the svent thot it overfiows the maximu e long b specified in
the secora parameler (o igets

C Errcrs 0 Avoid - Do sol acodentally type close nstead of

felose. The olose funclion exists, so the sompiler accepts |
will even appear to work f the progiam only opens o cloges o
few files. However, o the program opens and closes a file i a

loop, it wili eventually run out of available file handles and/or

memory space and crash, because close is not closing the files

correctly.

6.1 BINARY FILES

Binary files are very similar lo arrays of struciures, excepi

the structures are in a disk file rather than in an array in
memory. Because the structures in a binary file are con disk, you
Wt oreate very large collections of them {imted only Ly vois
wecadis disk space). They are also permanont and ohwovs
available. The only disadvantage i1s the siowness that conmes

from disk access time.

Binary files have two features that distinguish them from text

files:

» You can jump instantly to any structure in the file, which

provides random access as in an array

» You can change the contents of a structure anywhere in

the file at any time.

Binary files also usually have fastar read and write times
than text files, because a binary image of the record is stored
directly from memory to disk {or vicz versa). in a text fie,
averything has to be converted back and forih o ioxt, and this

takes time.

C supports the file-of-structures concept ve, cleal . e
vou open the file you can read a structure wnte o straciue, o
seek 10 any structure in the file. This file “uncesi supuorts the
concept of a file pointer. When the file = cosned. the nomter
noinis to recvurd O (the first record in the filg). Any ren.
operation reads the currently pointed-io structure and moves

the pointer down one structure. Any write operation writes to

91

the currently pointed-to structi=«: =no wves Lo olntar down

one structure. Seek moves 7o pontar (o the reauesied record,

Keen in mind that C thinks of everything in the disk file as
blocks of bytes read from disk into memory or read from memory
onto disk. C uses a file pointer, but it can point to any byte
location in the file. You therefore have to keep track of things.

The following program illustrates these concepts:
#include <stdio.h>
/* random record description - could be anything */

struct rec

int x,v,2;

/* writes and then reads 10 arbitrary records
from the file "junk". */

int main()

{
intij;
FIEE™f;

struct recr;

/* create the file of 10 records */

f=fopen("junk","w");

if (1f)

92

return 1;
for (i=1;i<=10; i++)
{
rX=i;
fwrite(&r,sizeof(struct rec),1,f);

}

fclose(f);

/* read the 10 records */
f=fopen("junk","r");
if (If)
return 1;
for (i=1;i<=10; i++)
{
fread(&r,sizeof(struct rec),1,f,

printf("%d\n" r x);

55

S g
B b 2 1

iV,

/* use fseek to read the 10 records
in reverse order */
f=fopen("junk","r");

if ('f)

93

return 1;

for (i=9; 1>=0; i-)

fseek(t,sizrof(si st co0 i SEEK _SET);
fread(&r,sizeof(struct rec), 1,i),
printf("%d\n",r.x);

}

fclose(f);

printf("\n");

/* use fseek to read every other record */
f=fopen("junk","r");
if ('f)
return 1,
fseek(f,0,SEEK_SET),
for (i=0;i<5; i++)
{
fread(&r,sizeof(struct rec),1,);
printf("%d\n",r.x);
fseek(f,sizeof(struct rec),SEEK_CUR);
}
fclose(f);

printf("\n");

94

/* use fs=zek to read 4th record,

change it, and write: it back */

enyjune),

i (1)

return 1,
feaek(f,sizeof(struct ruc)*3,SEEK_SET);
fread(&r,sizeof(struct rec),1,f);
r.x=100;
iseek(i,sizeof(struct rec)*3,SEEK_SET);
fwrite(&r,sizeof(struct rec),1,f);
fclose(f);

printf("\n");

* read the 10 records to insure
4th record was changed */

f=fopen("junk”,"r");

if (If)
return 1;

for (i=1,i<=10; i++)

(
fread(&r,sizeof(struct rec),1,f);
printf("%d\n",r.x);

}

fclose(f);

return C;

}

In this program, a structure description rec has Leen used,
but you can use any structure description you want. You can

see that fopen and fclose work exactly as they did for text files

The new functions heie are fread, fwrite znd fseek Tne

fread function takes four parameters

. A memory address

B The number of bytes 10 read per block
. The number of blocks to read

. “ha e variable

Thus, the lie fread{sr sizcoi{stiact tec) 1,1}, siys to rea
12 byies (the size of rec) from the file f {from the current lecation

4

¥ the file pointery into memory address &r. One plock o 17

bytes I1s requested. It would be just as easy to read 100 bloak:

from disk into an array in memory by chang:ne 7§ 100

The fwrite funchion works the sams way, but moves i
plock of bytes frean memory te the file. The fseek funciio
moves the de conder to a byte in the file. Generally, you maove

W3 posior o Tzes¥struct enc) ictomarts to Kenn the o ooe

SEOrd gy v s Y ems e thral a Hiong i

SEEK SET
SEEK TCUR
. SEEK _END

SEEK_SET moves the pointer x bytes down from the
beginning of the file (from byte 0 in the file). SEEK_CUR moves

96

the pointer x bytes down from the current pointer position.
SEEK_END moves the pointer from the end of the file (so you
must use negative offsets with this option).

Several different options appear in the code above. In
particular, note the section where the file is opened with r+
mode. This bpens the file for reading and writing, which allows
records to be changed. The code seeks to a record, reads it,
and changes a field; it then seeks back because the read

displaced the pointer, and writes the change back.

Let us sum up

We have covered about the File Handling features in C in detail.

Learning Activities
a) Fill in the blanks:

1) The two types of file handled by C are _ and

2) The fseek, fread and fwrite functions take

parameters.
b) State whether true or false:
1. File descriptor is a pointer data type. (True / False)

2. Structures can be passed as records to files. (True/False).

Answers to Learning Activities
a) Fill in the blanks:

1) text, binary

2) Four.

b) State whether true or false:
1. True.

2. True.

97

f@{!ndei _Qu_e'st_iphs

1. What are Files? List the different types of files associated
with C

2. Write a detailed note on Text files

3. Describe in detail Binary Files. available in C.

_B_gferences

1. Kamthane, “Programming with ANSI and Turbo C, Pearson
Education, Delhi, 2002.

2. Al Kelley, lya Pohl, “A Book on C”, Pearson Education, Delhi,
2001.

98

Block 3: Introduction

This block will teach you about Data Structures mainly
about the various data structure types supported by the C
language. This block is divided into four units.

Unit 7: This unit deals with the stack and queue data structures

and has been discussed in detail.

Unit 8 : This unit deals with the linked list data structure and its

various types.

Unit 9 : This unit deals a detailed study on Graphs.

99

Unit-7

Stacks and Queues

Structure

Overview

l.earning Objectives
7.0 Introduction to Data Structures
7.1 Stacks
7.2 Implementation of stacks using Arrays in C
7.3 Queues
7.4 implementation of stacks using Arrays in C
7.5 Application of Queues

Let us sum up

Answer to learning activities
References

Overview

This unit is devoted to stack and queue data structures
and has been discussed in detail.

Learning Objectives

At the end of this unit you will have a clear
understanding on the basic concepts of data structures and its

implementation as a stack and a queue.

7.0 INTRODUCTION TO DATA STRUCTURES

A data type is a well-defined collection of data with a
well-defined set of operations on it. A data structure is an actual

implementation of a particular abstract data type. In computer

100

science, a data structure is a way of storing data in a computer
so that it can be used efficiently. Often a carefully chosen data
structure will allow a more efficient algorithm to be used. The
choice of the data structure often begins from the choice of an
abstract data structure. A well-designed data structure allows a
variety of critical operations to be performed, using as few
resources, both execution time and memory space, as
possible. Data structures are implemented using the data
types, references and operations on them provided by a

programming language.

Different kinds of data structures are suited to different
kinds of applications, and some are highly specialized to certain
tasks. For example, B-trees are particularly well-suited for
implementation of databases, while routing tables rely on
networks of machines to function. In the design of many types
of programs, the choice of data structures is a primary design
consideration, as experience in building large systems has
shown that the difficulty of implementation and the quality and
performance of the final result depends heavily on choosing the
best data structure. After the data structures are chosen, the
algorithms to be used often become relatively obvious.
Sometimes things work in the opposite direction - data
structures are chosen because certain key tasks have
algorithms that work best with particular data structures. In

either case, the choice of appropriate data structures is crucial.

The fundamental building blocks of most data structures
are arrays, records, discriminated unions, and references. For
example, the nullable reference, a reference which can be null,
is @ combination of references and discriminated unions, and
the simplest linked data structure, the linked list, is built from

records and nullable references.

101

There is some debate about whether data structures
represent implementations or interfaces. How they are seen
may be a matter of perspective. A data structure can be viewed
as an interface between two functions or as an implementation
of methods to access storage that is organized according to the

associated data type.

7.1 STACKS

A stack is a list in which all insertions and deletions are

made at one end, called the top. The last element to be
inserted into the stack will be the first to be removed. Thus
stacks are sometimes referred to as Last In First Out (LIFO)
lists.

G
{
]
=

223
\
)

(i

O
’

Figure 7.1: A Stack structure

The following operations can be applied to a stack:
initStack(Stack): creates an empty stack
Push (ltem): pushes an item on the stack

Pop(Stack): removes the first item from the stack

102

Top(Stack): returns the first item from the stack without

removing it

isEmpty(Stack): returns true is Li.¢ stack is empty

PUSH

POP

_— b Lo A n

5

Push(41) 4l 4l

2 3] 2l

12 2 12

5 P23

5 5

§ e B s

4 41 X [Qp() 4
31 21 > 3] 21
2 12 B 12
L3 1l 3

7.2 IMPLEMENTATION USING ARRAYS

We have here the implementation of a Stack data structure

using C.

int StackArray[50]; // StackArray can contain
[l up to 50 numbers
int top=-1; // index of the top element of the stack

/I -1 used io indicate an empty stack

103

void Push(int elem)

{

top++;

StackArray[top] = elem;

}
int Pop()

{
int elem = StackArray[top];
top--;
return elem;
}
Abstract Data Type

An Abstract Data Type is some sort of data together with
a set of functions (interface) that operate on the data. Access is
only allowed through that interface. The implementation details
are ‘hidden’ from the user.

The Stack-ADT can be given by
#define STACKSIZE 50
struct Stack
{
int item[STACKSIZE];
int top;

2
void InitStack(Stack &st);

void Push(Stack &st, int elem);

104

int Pop (Stack &st);
int Top (Stack st);

bool isEmpty(Stack st);

Stack specification Using the Stack ADT
#include "stack.h"

void main()

{

Stack st1, st2; // declare 2 stack variables
InitStack(st1); // initialise them
InitStack(st2);

Push(st1, 13); // push 13 onto the first stack
Push(st2, 32); // push 32 onto the second stack
int i = Pop(st2); // now popping st2 into i

int j = Top(st1); // returns the top of st1 to j
// without removing element

%

Application of Stacks:

Evaluation of arithmetic expressions:

Usually, arithmetic expressions are written in infix notation, e.g.
A+B*C
An expression can as well be written in postfix notation (also

called reverse polish notation):

105

A+B becomes AB+
A*C becomes AC*
A+B*C becomes ABC*+
(A+B)*C becomes AB+C*
Evaluating expressions
Given an expression in postfix notation. Using a stack they can
be evaluated as follows:
- Scan the expression from left to right

- When a value (operand) is encountered, push it on the
stack

- When an operator is encountered, the first and second
element from the stack are popped and the operator is
applied

- The result is pushed on the stack

2144+ 5%
pep 14 mshS pop3
h2 i
PUShM 2 pplé op answer. 80
I pish2 + 14 = 1§ pshlé * 5 =80

7.3 QUEUES

A Queue is an ordered collection of items from which
items may be deleted at one end (called the front of the queue)
and into which items may be inserted at the other end (the rear
of the queue).

106

The following operations can be applied to a queue:
InitQueue(Queue): creates an empty queue
Join (Item): inserts an item to the rear of the queue

Leave(Queue):. removes an item from the front of the

queue
isEmpty(Queue): returns true is the queue is empty

FIFO-lists

21155 711

—

Rear Front

Join{36); ——» 36[21)55 7]12

T

Rear Front

Elements can only be added to the rear of the queue and

removed from the front of the queue.

3621{55 7|12

T T

Rear Front
Leaxel)yy ———» 321155 7
Rlar Front

107

7.4 IMPLEMENTATION OF QUEUES USING ARRAYS IN C

Removing an element from the queue is an expensive
operation because all remaining elements have to be moved by
one position. A more efficient implementation is obtained if we

consider the array as being ‘circular’:

el

/{()] [n-1]

front

Joining the Queue

Initially, the queue is empty, i.e. front == rear. If we add an
element to

the queue we
1) check if the queue is not full
2) store the element at the position indicated by rear

3) increase rear by one, wrap around if necessary (in this
case rear always points to the last item in the queue — the

rear item)
Adding one element
if (rear == QSIZE -1)
rear = 0;

else

108

rear = rear+1;

add an element to the queue

7.5APPLCATION OF QUEUES

In a multitasking operating system, the CPU time is

shared between mulitiple processes. At a given time, only one
process is running, all the others are ‘sleeping’. The CPU time
is administered by the scheduler. The scheduler keeps all
current processes in a queue with the active process at the

front of the queue.

next process
Process D C B A

Queue e W running
process

Round-Robin Scheduling:

Every process is granted a specific amount of CPU time,
its ‘quantum’. If the process is still running after its quantum run

out, it is suspended and put towards the end of the queue.

next process

D C B A
5 '\\ running
Process !

Process
Queue

The Queue-ADT:
#define QSIZE 50

struct Queue

109

{
int items[QSIZE];

int rear;

int front;

h

queue.h

void InitQueue(Queue &q);
void Join(Queue &q, int elem);
int Leave(Queue &q);

bool isEmpty(Queue q);

The Queue-ADT

#define QSIZE 50

struct Queue

{

int items[QSIZE];

int rear,

int front;

b

gueue.h

void InitQueue(Queue &q);
void Join(Queue &q, int elem);
int Leave(Queue &q);

bool isEmpty(QUe.ue qQ);

Let us sum up

110

We have covered about the basic data structures
namely stacks and queues and shown their implementation
using arrays in C.

Learning Activities
a) Fill in the blanks:

1) The fundamental building blocks of most data structures are

2) An application of queues is in
b) State whether true or faise:
1. Stacks are used as a FIFO list. (True / False)

2. Queues are used to evaluate arithmetic expressions.
(True/False).

Answers to Learning Activities
a) Fill in the blanks:

1) arrays, records

2) Job scheduling.

b) State whether true or false:
1. False.

2. False.

Model Qu>stions

1. Explain in detail about stack data structure.

2. Write notes on the applications of queues.

3. Show the stack implementation of the expression 3 * 4 + 5.

References

1. An Introduction to Data Structures with Applications by
Tremblay, J.P. and Sorenson, P.G.

11

2. Data Structures using C and C++ by Y.Langesam, M.J.
Augenstein and A.M. Tenenbaum.

Unit-8

LINKED LIST

Structure

Overview

Learning objectives
8.0 Linked List
8.1 Singly Linked List
8.2 Two-Way Linked List
8.3 Circular Linked List

8.4 Implementation of Linked Lists Structure in C
Let us sum up

Answer to learning activities

References

OVERVIEW

This unit is devoted to the detailed study of the Linked
List Data Structure. It covers the three major types of linked

lists.

Learning Objectives

At the end of this unit you will have a clear knowledge on

the various types of linked lists and its implementation.

112

8.0 LINKED LISTS

A linked list is an algorithm for storing a list of items. It is
made of any number of pieces of memory (nodes) and each
node contains whatever data you are storing along with a
pointer (a link) to another node. By locating the node
referenced by that pointer and then doing the same with the
pointer in that new node and so on, you can traverse the entire

list.

Because a linked list stores a list of items, it has some
similarities to an array. But the two are implemented quite
differently. An array is a single piece of memory while a linked
list contains as many pieces of memory as there are items in
the list. Obviously, if your links get messed up, you not only
lose part of the list, but you will lose any reference to those
items no longer included in the list (unless you store another

pointer to those items somewhere).

Some advantages that a linked list has over an array are
that you can quickly insert and delete items in a linked list.
Inserting and deleting items in an array requires you to either
make room for new items or fill the "hole" left by deleting an
item. With a linked list, you simply rearrange those pointers that
are affected by the change. Linked lists also allow you to have
different-sized nodes in the list. Some disadvantages to linked
lists include that they are quite difficult to sort. Also, you cannot
immediately locate, say, the hundredth element in a linked list
the way you can in an array. Instead, you must traverse the list
until you've found the hundredth element.

General Representation

Next

/I\
LTI e CHID . CHIN s TN)_l

113

in the above figure there are 4 nodes. The data of the
nodes are A1, A2 , A3 & A4.The next part of A1 points the
address of A2 .The next part of A2 points the address of A3
.The next part of A3 points the address of A4 .The next part of
A4 contains null value. That means it contains no address.

(1 om0z T (78 (4

550 670 780 900

In the above figure, the address specifies where the
nodes are stored in memory. The node A1 is in the address
550.The next part of A1 contains the 670 which is the address
of next node A2 .The node A2 is in the address 670.The next
part of A2 contains the 780 which is the address of next node
A3 .The node A3 is in the address 780.The next part of A3
contains the 900 which is the address of next node A4 .The
next part of A4 contains null. Because A4 is the last node of the
linked list. Using this technique the nodes are virtually

connected.

8.1 SINGLY LINKED LIST

(A1 Jero—{ A2 [re0—>{ A3 |o00——{ A4 |l
550

670 780 900

Singly linked list is the collection of nodes. Each node
contains two parts. One is data field another one is address of
the next node. Using this address field we can find the next
node. So there is no limitation for storing the data. The nodes in

the list are stored anywhere of the memory. The last node of

114

the list contains null value. In the program the value zero is
used to represent the null value. The head node is used to
represent where the list is start. The head node contains no

data. There are five possible operations in a link list.

INSERTION
There are two possible ways to insert the new node in the list.

o INSERT THE NODE AS LAST NODE

« INSERT THE NODE BETWEEN TWO EXISTING
NODES

Consider the following list.

tjln/np
TR T e BN T e K T e SAED

Initially set the pointer temp in the head node. We want to
insert the new node as the last node of the list. The position is
4 (excluding Head node.) Always, before perform the operation
insert or delete move the temp to the previous position of

insertion or deletion position.

The new node is in the memory address 1450.The data stored
in the new node is 10. After insert the new node the list has

changed as follow as.

temp new notie
s \
H > nom—ﬁ 8 hasg—>{ 10 | 0
(sol'.°°° 2-mllm : 1200 : 14to -mlsoJ

How can we link the new node with list?

115

1. Move the pointer temp to the previous position (3).

2. Store the address of new node (1450) in the address field
of previous node temp.

3. Store null value on the address field of new node .

Now , the new node is connected with list.

(HB;EQN}—‘% 210|::06_—>(T12[;:s 814[0:]

1450

/I\

new node

Another one possible insertion in the list is, insert the new
node between two existing nodes. This is same as the above
example. We want to insert the new node at position 3.The
position is between two nodes. Like the above, move the
pointer temp to the previous position of insertion position. So,
we should move temp to position 2. After insert the list has
changed as follow as. Remember, the nodes in the list are

anywhere in the memory. Using pointers we can link the nodes.
The steps involved in the insertion between two nodes are..
1. Move the pointer temp to the previous position (2).

2. Store the address of the next node (in position 4 address
(1400)) of new node in the address field of new node.

3. Store the address of new node (1450) in the address

field of previous node temp.

DELETION:

Like, Insertion there two possible deletions in the list.

o« DELETE THE LAST NODE

116

» DELETE THE NODE BETWEEN TWO EXISTING

(o w52 o abwg—N s Lo] Lan]3)

In the first case, like insertion move the pointer temp to
the previous node of deletion node. In the above figure, there
are four nodes except head node. The last node is in the

position 4.To remove that node we can do the following steps.

1. Move the pointer temp to the previous position of last

node.
2. Store null in the address field of temp.

Now, the last node has removed from the list. Another one
possible deletion is, remove the node that is placed between
two nodes. This is same as the above example. We want to
delete the node at position 2.The position is between two
nodes. Like the above, move the pointer temp to the previous
position of deletion position. So, we should move temp to
position 1. After delete, the list is changed as follow as.

temp

J
CHIE ae ’“,1.*.‘."'QJ (4 g K e 14

The steps involved in the deletion operation are..

1. Move the pointer temp to the previous position (1).

117

2. Store the address of the node (1400) which is placed
next of the deletion node in the address field of temp

node. Now, the node has been removed.

The other operations on linked lists include view

search the element and search the position of an element.

8.2 TWO WAY LINKED LIST

in the Two-way or doubly link list there are three parts in

each node. There are prev, next, data. The prev contains the
address of the previous node. The next contains the address of
the next node. The data contains the value. The head node is
used to represent where the list starts. The head node contains
no data. The last node of the list contains null value.

There are two possible ways to insert the new node in the list.
e INSERT THE NODE AS LAST NODE

o INSERT THE NODE BETWEEN TWO EXISTING
NODES

Consider the following list.

temp

J
(-]H |1ooo);>@oo Iz]1zoojﬁ{1ooo] 4 [0]
800 1000 1200

l:]:lp new notie
[- !H IWM |2 ‘1200 p{woo] 4 |14oo @1200|10| 0]
800 R 1000 1200 1400

Initially set the pointer temp in the head node. We want
to insert the new node as the last node of the list. The position
is 3 (excluding Head node.)Always, before perform the

operation insert or delete move the temp to the previous

118

position of insertion or deletion position. The new node is in the
memory address 1400.The data stored in the new node is 10.
After insert the new node the list has changed as follow as.

How can we link the new node with list?
1. Move the pointer temp to the previous position (2).

2. Store the address of new node (1400) in the address
field of previous node temp.

3. Store null value on the address field of new node .

Now, the new node is connected with list. Another one
possible insertion in the list is, insert the new node between
two existing nodes. This is same as the above example. We
want to insert the new node at position 3.The position is
between two nodes. Like the above, move the pointer temp to
the previous position of insertion position. So, we should move
temp to position 2. After insert the list has changed as follow

as.

'.emp

(- [n 1000 {00 [2 [1200):{wool . IMSO m"’ J

800 1000
= [[

1450

new node

Remember, the nodes in the list are anywhere in the memory.
Using pointers we can link the nodes. The steps involved in the

insertion between two nodes are.
1. Move the pointer temp to the previous position (2).

2. Store the address of the next node (in position 4 address
(1400)) of new node in the address field of new node.

119

3. Store the address of new node (1450) in the address
field of previous node temp.

Like, Insertion there two possible deletions in the list.
« DELETE THE LAST NODE

- DELETE THE NODE BETWEEN TWO EXISTING
NODES

In the first case, like insertion move the pointer temp to the

previous node of deletion node.

temp

(- | H [1000 >{e00 [2 [1200 {1000 [4 | o) &2ool1lzo| o |

1000 1200

In the above figure, there are four nodes except head node.
The last node is in the position 3.To remove that node we can

do the following steps.

1. Move the pointer temp to the previous position of last
node.

2. Store null in the address field of temp.

Now, the last node has removed from the list. Another one
possible deletion is, remove the node that is placed between
two nodes. This is same as the above example. We want to
delete the node at position 2. The position is between two
nodes. Like the above, move the pointer temp to the previous
position of deletion position. So, we should move temp to
position 1. After delete, the list is changed as follows.

The steps involved in the deletion operation are..

1. Move the pointer temp to the previous position (1).

120

ump

ChEREle) o) e e)

800 1000 1200 1400

2. Store the address of the node (1400) which is placed
next of the deletion node in the address field of temp

node.

Now, the node has been removed. To show all the elements in
the list , we should do the following steps.

1. Move the pointer temp to the first node of the list.

2. Everytime after display the element move the pointer

temp to the next position.
3. Repeat the process until the position is not null.

Search the position means, find the element which is stored in

the particular position.

Initially the pointer temp points the first node. Move the pointer
temp and check the position.

If the position is presented then display the element which is
stored in that position. Search the no that is presented in the list
are not. Initially the pointer temp points the first node. Move the
pointer temp and check the number. If the number is presented
then display the element and position.

8.3 CIRCULAR LINKED LIST

Data

L(H]iooo A1 f1200—(A2 |140H A3 [aoo}J
800 1000 1400
Next

121

In the circular linked list is the collection of nodes. Each
node contains two parts. One is data field another one is
address of the next node. Using this address field we can find
the next node. So there is no limitation for storing the data. The
nodes in the list are stored anywhere of the memory. The last
node of the list contains the starting address of the list. So the
list is called as circular list. In the program the value zero is
used to represent the null value. The head node is used to
represent where the list is start. The head node contains no
data.

There are two possible ways to insert the new node in the list.
o INSERT THE NODE AS LAST NODE

o INSERT THE NODE BETWEEN TWO EXISTING
NODES

Consider the following list.

G o= o (e)

Initially set the pointer temp in the head node. We want to
insert the new node as the last node of the list. The position is
4 (excluding Head node.) Always, before perform the operation
insert or delete move the temp to the previous position of
insertion or deletion position. The new node is in the memory
address 1450.The data stored in the new node is 10. After

insert the new node the list has changed as follow as.

122

temp new node

J
(0 Jo =G (e = (L)

How can we link the new node with list?
1. Move the pointer temp to the previous position (3).

2. Store the address of new node (1450) in the address

field of previous node temp.

3. Store the starting address value on the address field of

new node.

Now, the new node is connected with list. Another one
possible insertion in the list is, insert the new node between
two existing nodes. This is same as the above example. We
want to insert the new node at position 3.The position is
between two nodes. Like the above, move the pointer temp to
the previous position of insertion position. So, we should move
temp to position 2. After insert the list has changed as follow

as.

new node

Remember, the nodes in the list are anywhere in the memory.

Using pointers we can link the nodes.
The steps involved in the insertion between two nodes are.

1. Move the pointer temp to the previous position (2).

123

2. Store the address of the next node (in position 4 address
(1400)) of new node in the address field of new node.

3. Store the address of new node (1450) in the address

field of previous node temp.
Like , Insertion there two possible deletions in the list.
« DELETE THE LAST NODE
« DELETE THE NODE BETWEEN TWO EXISTING

NODES
RO O e EI TV

In the first case, like insertion move the pointer temp to

the previous node of deletion node.

In the above figure, there are four nodes except head
node. The last node is in the position 4. To remove that node we
can do the following steps.

1. Move the pointer temp to the previous position of last

node.
2. Store the starting address in the address field of temp.

Now, the last node has removed from the list.

-

800 4000 1200 1400

/I\

temp

Another one possible deletion is, remove the node that is
placed between two nodes. This is same as the above

example. We want to delete the 1 ' position 2.The position

124

is between two nodes. Like the above, move the pointer temp
to the previous position of deletion position. So, we should
move temp to position 1. After delete, the list is changed as

follows.
The steps involved in the deletion operation are..
1. Move the pointer temp to the previous position (1).

2. Store the address of the node (1400) which is placed next of
the deletion node in the address field of temp node.

Now, the node has been removed. To show all the elements in

the list, we should do the following steps.
1. Move the pointer temp to the first node of the list.

2. Everytime after display the element move the pointer

temp to the next position.

3. Repeat the process until the position is not the starting

address.

Search the position means, find the element which is
stored in the particular position. Initially the pointer temp points
the first node. Move the pointer temp and check the position.
If the position is presented then display the element which is
stored in that position. Search the no that is presented in the list
are not. Initially the pointer temp points the first node. Move the
pointer temp and check the number. If the number is presented

then display the element and position.

Data

L(H hooo—>(A1 frz00—>{ A2 f140—>{ A3 (800}
800~ ' 1000 1200 1400
Next

125

8.4 Implementation of Linked Lists Structure in C

The following C programs illustrate the use of structures in C to

implement linked lists.
Program 1

struct employee {
char LastName [80];
char FirstName [80];
float salary; ¥

struct employee *ptr1;
struct employee *ptr2;
struct employee *ptr3;
main ()

{

ptr1 = malloc (sizeof(struct
employee));

strepy(ptr1 -> LastName ,
"Smith");

strepy(ptr1 -> FirstName
"Margaret");

ptr1 -> salary = 70000;

ptr2 = malloc (sizeof(struct
employee));

ptrl —

Smith

Margaret

P2 —

Smith

Robert

ptd ——

Millicent

John

strepy(ptr2 -> FirstName , "Robert");

strepy(ptr2 -> LastName , ptr1 -> LastName);

ptr2 -> salary = 60000;

ptr3 = malloc (sizeof(struct employee));

strepy(ptr3 -> FirstName , "John");

strepy(ptr3 -> LastName , "Millicent");

ptr3 -> salary = 10000;

126

Last Name

First Name

Salary

Last Name

First Name

Salary

Last Name

First Name

Salary

printf("%s, %s makes $%f\n",ptr1 ->LastName,ptr1 -

>FirstName,ptr1 ->salary);

printf("%s, %s makes $%f\n",ptr2 ->LastName,ptr2 -
>FirstName,ptr2 ->salary);

printf("%s, %s makes $%f\n",ptr3 ->LastName,ptr3 -

>FirstName,ptr3 ->salary);

}
Program 2
Head ——= Millicent Last Name struct employee
Johin FirstName char LastName [80];
10000 Sala .
Y char FirstName [80];
next Y
P, float salary;
e, SO o
struct employee
*next;
Smith Last Name
Robert First Name
60000 Salary struct employee
next j *head,*temp;
N e
< main ()
Smith Last Name {
Margaret | First Name head = 0

70000 Salary

next 0
\, temp = malloc

null (sizeof(struct

employee));
strepy(temp -> LastName , "Smith");
strcpy(temp -> FirstName , "Margaret");
temp -> salary = 70000;
head = temp;

127

temp -> next = 0;

temp = malloc (sizeof(struct employee));
strepy(temp -> FirstName , "Robert");
strepy(temp -> LastName , "Smith");
temp -> salary = 60000;

temp -> next = head;

head = temp;

temp = malloc (sizeof(struct employee));
strepy(temp -> FirstName , "John");
strepy(temp -> LastName , "Millicent");
temp -> salary = 10000;

temp -> next = head;

head = temp;

/I print out all elements
temp = head;
while (temp !=0)

{

printf("%s, %s makes $%f\n" temp -
>LastName,temp ->FirstName,temp ->salary);
temp = temp -> next;

}

}

Let us sum up

We have covered about the basic concepts on linked lists and

its structure. We have also seen the various types in linked lists

with relevant detailed examples.

Learning Activities

a) Fill in the blanks:

128

3.

A singly linked list has two parts namely and

b) State whether true or false:

4

Linked list are more advantageous than arrays. (True /

False).

Circular linked list have links at both the ends of the node.
(True/False).

inserting or Deleting an element at the given position

cannot be done using singly linked list.

Answers to Learning Activities

Fill in the blanks:

Data, pointer.

State whether true or false:

. True.

2. True.

3. False.

Model Questions

1.

Explain the insertion of 35 in the given singly linked list — 12,
45, 67, 79, 134.

2. Write detailed notes on Circular linked list.

References

1. Algorithms and Data Structures — Programmes by Nicklaus
Wirth.

2. Data Structures using C and C++ by Y.Langesam, M.J.

Augenstein and A.M. Tenenbaum

129

Unit-9

GRAPHS

Structure
Overview
Learning objectives
9.0 GRAPHS
9.1 Adjacency Matrix
9.2 Implementation of a directed Graphs in C
Let us sum up
Answer to learning activities

References

OVERVIEW

This unit is devoted to the detailed study of the Graph

data structure, which an advanced data structdre.

_Lj' rning Objectives

At the end of this unit you will have a clear knowledge on
the ways of representing graphs and its implementation in C.

130

9.0 GRAPHS

It is possible to place all components of the data types we have

considered thus far in a linear order. That is, we can identify the
first component, the second, etc. It is not always possible to this.

For example, consider the relationship of father and sons.
In this case the nodes cannot be put into a linear order. A data
type to represent this would need to be a non-linear data
structure. What is needed is the ability to represent the nodes and
the connections between nodes. A collection of nodes and the

connections between them is called a graph.

Basically all non-linear structures are graphs. We can
generally explain about a simple limited type of graph called a
tree. Tree is an important data structure that represent a

hierarchy.
Trees/hierarchies are very common in our life:
Tree of species (is-a)
— Component tree (part-of)

— Family tree (parent-child)

JAKE'S PIZZA SHOP

Owner
Jake

Manager Chef
Brad Carol

|
| | —

Waitress Waiter Cook Helper
Joyce Chris Max Len

Figure 9.1: graphs example

131

9.1. ADJACENCY MATRIX

One of the methods of representing Graphs is by creating

an equivalent Adjacency matrix for the same. The Adjacency

Matrix is constructed as follows.

Given a graph, for each edge (u, v), set A [u] [v] = 1;
otherwise the entry is 0. If the edge has a weight associated with
it, set A [u] [v] to the weight. Space requirement is ®(|V]2); It is
alright if the graph is dense, i.e., |E| = ©(|V|2).

& To Modes -»

-

From Hades

—
i

Figure 9.2: adjacency matrix

Initially the matrix is empty. Each edge adds an entry in the
matrix. A directed graph uses the entire matrix. An undirected
graph will have 2 entries per edge. Unweighted graphs insert 1 in
the place value and weighted graphs the corresponding weights.

The following figures show some examples for constructing

adjacency matrix.

132

Weighted Directed Graphs

Directed

TO

Directed edges onty allow movemnent in one direction

FROM

Quimjolalwm)p
1

Weighted Edges

Undirected

E dge weights represent cost,

Qmrlo|la|w}| P
w
!
]

Figure 9.3: Directed and undirected graph

9.2. IMPLEMENATION OF DIRECTED GRAPHS IN C

The most fundamental graph problem is to traverse

every edge and vertex in a graph in a systematic way. Indeed,
most of the basic algorithms you will need for bookkeeping

133

operations on graphs will be applications of graph traversal.
These include:

« Printing or validating the contents of each edge and/or
vertex.

« Copying a graph, or converting between alternate

representations.
« Counting the number of edges and/or vertices.
« Identifying the connected components of the graph.

» Finding paths between two vertices, or cycles if they
exist.

Since any maze can be represented by a graph, where
each junction is a vertex and each hallway an edge, any
traversal algorithm must be powerful enough to get us out of an
arbitrary maze. For efficiency, we must make sure we don't get
lost in the maze and visit the same place repeatedly. By being
careful, we can arrange to visit each edge exactly twice. For
correctness, we must do the traversal in a systematic way to
ensure that we don't miss anything. To guarantee that we get
out of the maze, we must make sure our search takes us
through every edge and vertex in the graph.

The key idea behind graph traversal is to mark each
vertex when we first visit it and keep track of what we have not
yet completely explored. Although bread crumbs or unraveled
threads are used to mark visited places in fairy-tale mazes, we
will rely on Boolean flags or enumerated types. Each vertex will
always be in one of the following three states:

e undiscovered - the vertex in its initial, virgin state.

« discovered - the vertex after we have encountered it, but
before we have checked out all its incident edges.

134

« completely-explored - the vertex after we have visited all

its incident edges.

Obviously, a vertex cannot be completely-explored
before we discover it, so over the course of the traversal the
state of each vertex progresses from undiscovered to

discovered to completely-explored.

We must also maintain a structure containing all the
vertices that we have discovered but not yet completely
explored. Initially, only a single start vertex is considered to
have been discovered. To completely explore a vertex, we
must evaluate each edge going out of it. If an edge goes to an
undiscovered vertex, we mark it discovered and add it to the list
of work to do. If an edge goes to a completely-explored vertex,
we will ignore it, since further contemplation will tell us nothing
new about the graph. We can also ignore any edge going to a
discovered but not completely-explored vertex, since the
destination must already reside on the list of vertices to

completely explore.

Regardless of which order we use to fetch the next
vertex to explore, each undirected edge will be considered
exactly twice, once when each of its endpoints is explored.
Directed edges will be consider only once, when exploring the
source vertex. Every edge and vertex in the connected
component must eventually be visited. Why? Suppose the
traversal didn't visit everything, meaning that there exists a
vertex u that remains unvisited whose neighbor v was visited.
This neighbor v will eventually be explored, and we will
certainly visit u when we do so. Thus we must find everything

that is there to be found.

135

The order in which we explore the vertices depends
upon the container data structure used to store the discovered
but not completely-explored vertices. There are two important
possibilities:

« Queue - by storing the vertices in a first in, first out
(FIFO) queue, we explore the oldest unexplored vertices
first. Thus our explorations radiate out slowly from the

starting vertex, defining a so-called breadth-first search.

« Stack - by storing the vertices in a last in, first out (LIFO)
stack, we explore the vertices by lurching along a path,
visiting a new neighbor if one is available, and backing
up only when we are surrounded by previously
discovered vertices. Thus our explorations quickly
wander away from our starting point, defining a so-called
depth-first search.

9.3. GRAPH TRAVERSALS

There are many different applications of graphs. As a

result, there are many different algorithms for manipulating
them. However, many of the different graph algorithms have in
common the characteristic that they systematically visit all the
vertices in the graph. That is, the algorithm walks through the
graph data structure and performs some computation at each
vertex in the graph. This process of walking through the graph
is called a graph traversal.

While there are many different possible ways in which to
systematically visit all the vertices of a graph, certain traversal
methods occur frequently enough that they are given names of
their own. This section presents two of them--depth-first

traversal and breadth-first traversal.

136

Breadth-First Traversal (BFS)

The breadth-first traversal of a tree visits the nodes in
the order of their depth in the tree. Breadth-first tree traversal
first visits all the nodes at depth zero (i.e., the root), then all the

nodes at depth one, and so on.

Since a graph has no root, when we do a breadth-first
traversal, we must specify the vertex at which to start the
traversal. Furthermore, we can define the depth of a given
vertex to be the length of the shortest path from the starting
vertex to the given vertex. Thus, breadth-first traversal first
visits the starting vertex, then all the vertices adjacent to the
starting vertex, and then all the vertices adjacent to those, and

SO on.

First, the starting vertex is enqueued. Then, the following

steps are repeated until the queue is empty:

1. Remove the vertex at the head of the queue and

call it v.
2. Visitv.

3. Follow each edge emanating from v to find the
adjacent vertex and call it to. If to has not already

been put into the queue, enqueue it.

Notice that a vertex can be put into the queue at most once.
Therefore, the algorithm must somehow keep track of the

vertices that have been enqueued.

137

L
b, @ i Bt
&| bj =t

) ot €| tm
] i],

Figure 9.4: Breadth-first traversal.
Figure 9.4 illustrates the breadth-first traversal of the

directed graph a’starting from vertex a. The algorithm begins
by inserting the starting vertex, a, into the empty queue. Next,
the head of the queue (vertex a) is dequeued and visited, and
the vertices adjacent to it (vertices b and c¢) are enqueued.
When, b is dequeued and visited we find that there is only
adjacent vertex, ¢, and that vertex is already in the queue. Next
vertex ¢ is dequeued and visited. Vertex c is adjacent to a and
d. Since a has already been enqueued (and subsequently
dequeued) only vertex d is put into the queue. Finally, vertex d
is dequeued an visited. Therefore, the breadth-first traversal of

g‘starting from a visits the vertices in the sequence

a,b, e d

DEPTH-FIRST TRAVERSAL (DFS)

A depth-first traversal of a tree always starts at the root
of the tree. Since a graph has no root, when we do a depth-first
traversal, we must specify the vertex at which to begin.

138

A depth-first traversal of a tree visits a node and then
recursively visits the subtrees of that node. Similarly, depth-first
traversal of a graph visits a vertex and then recursively visits all
the vertices adjacent to that node. The catch is that the graph
may contain cycles, but the traversal must visit every vertex at
most once. The solution to the problem is to keep track of the
nodes that have been visited, so that the traversal does not

suffer the fate of infinite recursion.

Figure 9.5: Depth-first traversal
For example, Figure illustrates the depth-first traversal of

the directed graph a‘starting from vertex c¢. The depth-first
traversal visits the nodes in the order

ca,b6.d

A depth-first traversal only follows edges that lead to
unvisited vertices. As shown in Figure if we omit the edges that
are not followed, the remaining edges form a tree. Clearly, the
depth-first traversal of this tree is equivalent to the depth-first

traversal of the graph.

Let us sum up

We have covered about the basic data structures namely
stacks and queues and shown their implementation using

arrays in C.

139

Learning Activities
a) Fill in the blanks:

1. Agraphisa type of data structure.
2. Main components of a graph are and
3. Two types of search operations and

b) State whether true or false:

1) Queues or Stacks can be used to implement search graphs.
(True/False).

Answers to Learning Activities
a) Fill in the blanks:

1) non-linear.

2) nodes, edges.

3) breadth-first, depth-first.

b) State whether true or false:

1. True.

Model Questions

1. What are Graphs? Show the adjacency matrix

representation of a graph.

2. Show the implementation of a directed graph in C.

References

1. An Introduction to Data Structures with Applications by

Tremblay, J.P. and Sorenson, P.G.

2. Computer Algorithms, Introduction to Design and Analysis

by Sara Baase and Allen Van &=l

140

141

Block 4: Introduction

In this block, we will learn about the concept of trees, and
searching and sorting techniques. This block is divided into one

unit are as follows

Unit 10: it deals with the Trees, Searching, Sorting and File

organizations.

142

Unit-10

Trees, searching and sorting

Structure

Overview
Learning Objectives
10.1. Trees
10.1.1. Binary Trees
10.1.2. Binary Tree Representations
10.1.3. Tree Traversals
10.1.4. AVL Trees
10.1.4. B-Trees
10.1.5. Applications of Trees
10.2. Searching Techniques
10.2.1. Linear Search
10.2.2. Binary Search
10.3. Sorting Methods
10.3.1. Selection Sort
10.3.2. Insertion Sort
10.3.3. Quick Sort
10.3.4. Heap Sort
10.3.5. Two-way Merge Sort
10.4. File Organizations
10.4.1. Sequential Organization
10.4.2. Indexed Sequential Organization
10.4.3. Direct Organization
Let us sum up
Answers to Learning Activities

References

143

OVERVIEW

The block begins with a detailed description of trees from
basic concepts to their representations and manipulations.
Some of the common sorting techniques are illustrated. The
methods of searching large amounts of data to find one
particular piece of information are considered. Finally various

file organizations are described.

LEARNING OBJECTIVES

After completing this block 4 you should be able to:
e Know the structure of various trees and their operations
¢ Understand the basic mechanisms of searching and sorting

e Write C programs for the above methods.

10.1. TREES

A tree structure means that the data is organized so that

items of information are related by branches. Familiar examples
of trees are genealogies and organization charts. Trees are
used to help analyze electrical circuits and to represent the
structure of mathematical formulas.

In computer applications, one of the most familiar uses of
tree structures is to organize file systems. The files are kept in
directories (folders) that are defined recursively as sequences of
directories and files.

144

Book
Cl
S1.1
S12
C2
S2.1
82:1:1
52.1.2
$2.2
52.3
C3

Diagram 10.1

Trees also used to organize information in database
systems and to represent the syntactic structure of source

programs in compilers.

A tree imposes a hierarchical structure on a collection of
items called nodes. Diagram 4.1 shows the table of contents of
a book and the tree representation. There are many different
types of trees which are called as:

e Binary trees and M-ary trees
e Ordered trees
¢ Rooted trees

e Free trees

145

Diagram 10.2

10.1.1. BINARY TREES

A binary tree is a finite set of elements that is either
empty or partitioned into three disjoint subsets. The first subset
contains a single element called the root of the tree. The other
two subsets are themselves binary trees, called the left and right
subtrees of the original tree. A left or right subtree can be
empty.

Each element of a binary tree is called a node of the tree.
A node is often depicted as a letter, a string, or a number with a
circle around it. A tree with no nodes is called null tree.

If A is the root of a binary tree and B is the root of its left
or right subtree, then A is said to be the father of B and B is said
to be the left or right son of A. A node that has no sons is called
a leaf.

146

The father-son relationship is depicted by a line. Trees
are normally drawn top-down with the father above the son.
Diagram 10.2 shows sample binary trees. Diagram 10.3
illustrates some structures that are not binary trees.

() <
°° &) GG geﬂ eﬂ

Diagram 10.3
If n4, N2... Nk is a sequence of nodes in a tree such that n;
is the father of ni44 for 1 £ i < k, then this sequence is called a
path from node nsto nk. The length of a path is one less than the
number of nodes in the path. For example A-B-E-G is a path of
length 3 in Diagram 10.2. There is a path of length of zero from

every node to itself.

Node n4 is an ancestor of node n; and n; is a descendant
of ny if nq is either the father of some ancestor of ny; that is if
there is a path from node ns to node nz. A node ny is a left
descendant of node ny if ny is either the left son of ny or a
descendant of the left son of ny. A right descendant may be
similarly defined. Two nodes are brothers if they are left and

right sons of the same father.

The height of a node in a tree is the length of a longest
path from the node to a leaf. The height of a tree is the height of

147

the root. The height of a binary tree with N nonleaf nodes is at
least logoN and at most N — 1.

The depth of the node is the length of the unique path
from the root to that node. The depth of a binary tree is the
maximum level of any leaf in the tree. Thus equals the length of
the longest path from the root to any leaf. Thus the depth of the
tree of Diagram 10.2 is 4.

Going from the leaves to the root is called “climbing” the
tree, and going from the root to the leaves is called
“descending” the tree.

If every nonleaf node in a binary tree has nonempty left
and right subtrees, the tree is termed a strictly binary tree. A

strictly binary tree with n leaves always contains 2n — 1 nodes.

The level of a node in a binary tree is defined as follows:
the root of the tree has level 0, and the level of any other node
in the tree is one higher than the level of its father. For example,
in the binary tree of Diagram 10.2, node B is at level 1 and node
G is at level 3.

A complete binary tree of depth d is the strictly binary
tree of all of whose leaves are at level d. Diagram 10.4
illustrates the complete binary tree of depth 3.

148

Level

(® :

(®) O |
OBNOBNOBRON
HOOOOM®®@:

Diagram 10.4
If a binary tree contains m nodes at level |, it contains at
most 2m nodes at level | + 1. Since a binary tree can contain at
most one node at level 0 (the root), it can contain at most 2'
nodes at each level | between 0 and d. The binary tree of depth
d contains exactly 2° nodes at level d. The total number of
nodes in a complete binary tree of depth d, tn, equals the sum

of the number of nodes at each level between 0 and d. Thus

&
a4+ 8¢, P =y 2
/=0
By induction, it can be shown that this sum equals 2%*' — 1.
Since all leaves in such a tree are at level d, the tree contains 2°

leaves and, therefore, 2° — 1 nonleaf nodes.

Similarly, if the number of nodes, tn, in a complete binary
tree is known, depth d can be computed from the above
equation. Thus d equals log, (tn + 1) — 1. A binary tree of depth

d is an almost complete binary tree if:

1. Each leaf in the tree is either at level d or at level d — 1

149

2. For any node n in the tree with a right descendant at level
d, all the left descendants of n that are leaves are also at
level d.

The nodes of an almost corﬁplete binary tree can be
numbered so that the root is assigned the number 1, a left son
is assigned twice the number assigned its father, and a right son
is assigned one more than twice the number its father. Diagram

10.5 illustrates this numbering technique.

Diagram 10.5
An almosti complete binary tree with n leaves has 2n — 1

nodes, as does a strictly binary tree with n leaves. An almost
complete binary tree with n leaves that is not strictly binary has
2n nodes.

An almost complete binary tree of depth d is the
intermediate between the complete binary tree of depth d — 1,
that contains 2° — 1 nodes, and the complete binary tree of
depth d, which contains 2**! — 1 nodes.

150

Operations on Binary Trees:

There are a number of primitive operations that can be

applied to a binary tree. If p is a pointer to a node n of a binary

tree, then the functions

info(p) — returns the contents of n

left(p) — returns pointer to the left son of n
right(p) — returns pointer to the right son of n
father(p) — returns pointer to the father of n
brother(p) — returns pointer to the brother of n

These functions return the null pointer if n has no left son,

right son, father, or brother. The logical functions isleft(p) and

isright(p) return the value of true if n is a left or right son,

respectively, of some other node in the tree, and false

otherwise. The isleft function may be implemented as follows:

q = father(p);
if (g == null)
return (false); /* p points to the root */
if (left(q) == p)
return (true);
return(false);

or, even simpler, as father(p) && p == left(father(p)). isright may be

implemented in a similar manner, or by calling isleft.brother(p)

may be implemented using isleft or isright as follows:

if (father(p) == null)
return(null);
if (isleft(p))
return (right(father(p)));
return(left(father(p)));

151

In constructing a binary tree, the operations maketree,
setleft, and setright are useful.

= maketree(x) — creates a new binary tree consisting of a
single node with information field x and returns a pointer to
that node.

= setleft(p, x) — accepts a pointer p to a binary tree node with
no left son. It creates a new left son of node(p) with
information field x.

= setright(p, x) — analogous to setleft except that it creates a
right son of node(p).

10.1.2. BINARY TREE REPRESENTATIONS

The representations of binary trees are array
representation and linked representation.

Node Representation of Binary Trees:

Tree nodes may be implemented as array elements or as
allocations of a dynamic variable. Each node contains info, left,
right, and father fields which points to the node’s left son, right
son, and father respectively. Using the array implementation,
the binary tree can be declared as

#define NUMNODES 500
struct nodetype {

int info;

int left;

int right;

int father;

 :

struct nodetype node[numnodes];

Under this representation, the operations info(p), left(p),
right(p), and father(p) are implemented by references to

152

node[pl.info, node[p].left, node[p].right, and node[p].father,
respectively. The operations isleft(p), isright(p), and brother(p)
can be implemented using the operations left(p), right(p), and
father(p).

Once the array of nodes is declared, an available list can
be created by executing the following statements:

int avail, i
{

avail = 1;

for (i=0; i<NUMNODES; i++)

nodeli].left =i + 1;

node[NUMNODES-1].left = 0;

}

In the linked array representation of a binary tree each
node in a tree is taken from the available pool when needed and
returned to the available pool when no longer in use. The
available list is not a binary tree but a linear list whose nodes
are linked together by the left field.

Alternatively, a node may be defined by

struct nodetype {
int info;
struct nodetype *left;
struct nodetype *right;
struct nodetype *father;

h
typedef struct nodetype *NODEPTR;

The operations info(p), left(p), right(p), and father(p)
would be implemented by references to p->info, p->left,
p->right, and p->father, respectively. An explicit available list is

not needed in this representation.

153

The routines getnode and freenode simply allocate and
free nodes using the routines malloc and free. This
representation is called the dynamic node representation of a

binary tree.

Both the linked array representation and the dynamic
node representation are implementations of an abstract linked
(node) representation in which explicit pointers link together the
nodes of a binary tree.

The maketree function may be written as follows:

NODEPTR maketree(x)
int x;
{
NODEPTR p;
p = getnode ();
p->info = x;
p->left = NULL,;
p->right = NULL;
return(p);
}

The routine setleft(p, x) sets a node with contents x as the left
son of node(p):

setleft (p, x)
NODEPTR p;
int x;
{
if (p == NULL)
printf (“ void insertion \n");
else if (p->left 1= NULL)
printf (“ invalid insertion \n");
else
p->left = maketree (x);

154

It is not always necessary to use father, left, and right
fields. If a tree is always traversed in downward fashion (from
the root to the leaves), the father operation is never used; so a
father field is unnecessary. Similarly, if a tree is always
traversed in upward fashion (from the leaves to the root), left

and right fields are not needed.
Internal and External Nodes:

In the linked representation of binary trees, left and right
pointers are needed only in nonleaf nodes. Sometimes two
separate sets of nodes are used for nonleaves and leaves.
Nonleaf nodes contain info, left, and right fields and are

allocated as dynamic records or as an array of records.

Leaf nodes do not contain a left or right field and are kept
as a single info array that is allocated sequentially as needed.
Alternatively, they can be allocated as dynamic variables

containing only an info value.

In this case leaf nodes and nonleaf nodes are
distinguished, leaves are called external nodes or terminal
nodes and nonleaves are called internal nodes or non-terminal

nodes.

A son pointer within an internal node must be identified
as pointing to an internal or external node. This can be done in
C in two ways. One technique is to declare two different node
types and pointer types and to use a union for internal nodes,

with each alternative containing one of the two pointer types.

The other technique is to retain a single type of pointer
and a single type of node, where the node is a union that does
or does not contain left and right pointer fields.

155

Implicit Array Representation of Binary Tree:

The n nodes of an almost complete binary tree can be
numbered from 1 to n, so that the number assigned a left son is
twice the number assigned its father, and the number assigned
a right son is 1 more than twice the number assigned its father.

In C, arrays start at position 0; therefore instead of
numbering the tree nodes from 1 to n, they numbered from 0 to
n-1. For any node with position p,0 <p <n -1,

(i) leftson(p) is at 2p + 1 if 2p+1 < n-1. if 2p+1 > n-1, then
node p has no left son.

(ii) rightson(p) is at 2p + 2 if 2p+2 < n-1. if 2p+2 > n-1, then
node p has no right son.

(iii) father(p) is at position (p — 1)/2 if p # 0. When p = 0, node p
is the root and has no father.

Thus the operation left(p) is implemented by 2 « p + 1 and
right(p) by 2 « p + 2. Given a left son at position p, its right

brother is at position p + 1 and, given a right son at position p,
its left brother is at position p. father(p) is implemented by
(p—-1)/2.

p points to a left son if p is odd. Thus, the test for whether
node p is a left son is to check whether p % .. ‘'~ not equal to 0.
Diagram 4.6 illustrates an array that represents an almost
complete binary tree.

This representation can clearly be used for all binary
trees though in most cases there will be a lot of unutilized
space. Diagram 4.7 illustrates the array representation for the

non-almost-complete binary trees

156

01 2 3 45 6 7 89
AIB|C|DIE|F|IG|H|I[J

Diagram 10.6

1 2 3 4 65 6 7 8 9 10 11 12

Diagram 10.7

The implicit representation is also called the sequential

representation.

So an array element is allocated whether or not it serves

to contain a node of a tree. Therefore, unused array elements

157

must be flagged as null tree nodes. This can be achieved in two
ways:

e Setting a special value to info[p] if node p is null. This
special value should be invalid as the information content
of a legitimate tree node.

¢ Alternatively, a logical flag field, used may be added to
each node. Each node then contains two fields: info and
used. The entire structure is contained in an array node.
used (p), implemented as node[p].used, is TRUE if node
p is not a null node and FALSE if it is a null node. info[p]

is implemented by node[p].info.

The binary tree can be represented as an array of father
of each node in the tree. As an example, the tree of Diagram 4.6
is represented as follows:

012 3 456 7 8 9
-|A|A(B(B|C|C|D|D|E

Diagram 10.8

The root node does not have a father, so the father value
is entered as NULL.

Choosing a Binary Tree Representation:

The sequential representation is simpler, although it is
necessary to ensure that all pointers are within array bounds.
This sequential representation clearly saves storage space for
trees known to be almost complete, since it eliminates the fields

left, right, and father and does not even require a used field.

It is also efficient for trees that are only a few nodes short
of being almost complete although a used field might then be

required. However, the sequential representation can only be

158

used in a context in which only a single tree is required, or
where the number of trees needed and each of their maximum
sizes is fixed in advance.

By contrast, the linked representation requires left, right,
and father fields but allows much more flexible use of the
collection of nodes. In the linked representation, a particular
node may be placed at any location in any tree, whereas in the
sequential representation a node can be utilized only if it is

needed at a specific location in a specific tree.

In addition, the total number of trees and nodes is limited
only by a amount of available memory. Thus -the linked
representation is preferable in the general, dynamic situation of

many trees of unpredictable shape.
10.1 3 TREE TRAVERSALS

One of the most common operations performed on tree
structures is traversal. This is a procedure by which each node
is processed exactly once in a systematic manner. The meaning
of “processed” depends on the nature of the application. There
are three main ways of traversing a binary tree:

e Preorder (or depth-first order), where the node is first
visited, then the left and right subtrees are visited.

e [norder (or symmetric order), where the left subtree is
first visited, then the node is visited, then the right

subtree is visited.

e Postorder, where the left and right subtrees are visited,

the node is visited.

In each of these methods, nothing needs to be done to
traverse an empty binary tree. Diagram 4.9 illustrates a binary

189

tree and its three traversals. The easiest way to implement each
order is by using recursion.

Preorder Inorder Postorder

D B Dy B o

X
=
s
s
“
=

VI v

ABCDE BADCE BDECA

Diagram 4.9

160

A useful trick for producing the three node orderings is
the following: If a tree is walked around the outside of the tree
as shown in Diagram 4.10, starting at the root, moving
counterclockwise, and staying as close to the tree gives useful
trick for producing the three node orderings.

Preorder: ABDEGCFHI
Inorder: DBGEAHFIC
Postorder: DGEBHIFCA

Diagram 10.10

For preorder, a node is listed when it is passed for the
first time. For postorder, a node is listed when it passed for the
last time that is when it moves to its parent. For inorder, a leaf is
listed for the first time pass, and an internal node for the second
time passed.

Binary Tree Traversals in C:

The three C routines pretrav, intrav, and posttrav print the
contents of a binary tree in preorder, inorder, and postorder,
respectively. The parameter to each routine is a pointer to the
root node of a binary tree. The dynamic node representation is
used.

161

void pretrav(NODEPTR tree)

{
if (tree 1= NULL) {
printf(“%d\n”, tree->info); /* Visit the root */
pretrav(tree->left); /* traverse the left subtree */
pretrav(tree->right); /*traverse the right subtree */
}
}
void intrav(NODEPTR tree)
{
if (tree != NULL) {
intrav(tree->left); /* traverse the left subtree */
printf(“%d\n”, tree->info); /* Visit the root */
intrav(tree->right); /*traverse the right subtree */
}
}
void posttrav(NODEPTR tree)
{
if (tree != NULL) {
posttrav(tree->left); /* traverse the left subtree */
posttrav(tree->right); /*traverse right subtree */
printf(“%d\n”, tree->info); /* Visit the root */
}
}

The following is a nonrecursive routine to traverse a
binary tree in inorder.

#define MAXSTACK 100

void intrav2(NODEPTR tree)
{
struct stack {
int top;
NODEPTR item[MAXSTACK];
}s;
NODEPTR p;

162

s.top = -1;

p = tree;

do {
/* travel down left branches as far as possible */
Vi saving pointers to nodes passed W
while (p != NULL) {

push (s, p);
p = p->left;

}
/* check if finished */

if (fempty(s)) {
[* at this point the left subtree is empty */

p = pop(s);
printf (“%d\n”, p->info); /* visit the root */
p = p->right; /* traverse the right subtree */

The recursive intrav generally executes much more
quickly than the nonrecursive intrav2. The primary cause of the
inefficiency of intrav2 as written is the calls to push, pop, and

empty.

If the words “left” and “right” are interchanged in the
preceding definitions, three new traversal orders, which are
called the converse preorder, converse inorder, and converse
postorder, respectively. The converse traversal orders for the

example tree of Diagram 4.9 are

ACBED (converse preorder)
ECDAB (converse inorder)

EDCBA (converse postorder)

163

Expression Trees:

A strictly binary tree can be used to represent an
expression containing operands and binary operators. The root
of the strictly binary tree contains an operator that is to be
applied to the results of evaluating the expressions represented
by the left and right subtrees.

1. Every leaf is labeled by an operand and consists of that
operand alone.

2. Every nonleaf (internal) node is labeled by an operator.
Suppose n is labeled by a binary operator 8, and the
expression E4 is represented by the left child and E; by

the right child. Then n represents the expression E1 6 E».

/(*,\
()

§ ¢

oRo
ofo
olo

Diagram 10.11 Expression 3 +4 * (6 ~7)/5+ 3
Diagram 10.11 illustrates the above expression and its
tree representation. The preorder of the listing of the labels
gives the prefix form of an expression, where the operatcr
precedes its left and right operands. Similarly, a postorder listing
of the labels of an expression tree gives the postfix (or Polish)

representation of an expression. A postfix expression is written

164

by placing the operator after its two operands. No parentheses
are necessary in the prefix and postfix expressions.

The inorder traversal of an expression tree gives the infix
expression itself, but with no parentheses. As a binary
expression tree does not contain parentheses, the ordering of
the operations is implied by the structure of the tree.

Threaded Binary Trees:

The wasted NULL links of binary trees can be replaced
by threads. A binary tree is threaded according to a particular
traversal order. A NULL pointer in the left or right field of a node
with empty left or right subtrees the inorder predecessor or

successor can be assigned.

Diagram 10.12

Diagram 10.12 shows the binary trees with threads
replacing NULL pointers in nodes with empty left or right
subtrees. The threads are drawn with dotted lines to
differentiate them from tree pointers. The leftmost and rightmost
node in the tree still has a NULL pointer, since it has no inorder

predecessor or successor respectively.

In the right in-threaded binary trees (Diagram 10.13) the

right NULL pointers are replaced by the inorder successor. To

165

Diagram 10.13
implement a right in-threaded binary tree under the dynamic

node implementation of a binary tree, a separate boolean flag,
rthread, is included within each node to indicate whether or not
its right pointer is a thread. The rthread field of the rightmost
node of a tree is also set to TRUE. Thus a node is defined as
follows:

struct nodetype {
int info;
struct nodetype *left;
struct nodetype *right;
int rthread;
K
typedef struct nodetype * NODEPTR;

The following is a routine to implement inorder traversal
of a right in-threaded binary tree.

void intrav3 (NODEPTR tree)

{
NODEPTR p, q;

p = tree;
do {
q = NULL;
while (p != NULL) { /* traverse left branch */
q=p;
p = p->left;
}
if (q!'=NULL) {

166

printf (“%d\n”, g->info);

p = g->right;

while (g->rthread && p != NULL) {
printf(“%d\n", p->info);

q=p;
p = p->right;
}
}
} while (g!=NULL);

In a right in-threaded binary tree the inorder successor of
any node can be found efficiently. The routines maketree,

setleft, and setright are as follows.

NODEPTR maketree(int x)
{
NODEPTR p;
p = getnode();
p->info = x;
p->left = NULL;
p->right = NULL;
p->rthread = TRUE;
return(p);

void setleft(NODEPTR p, int x)

{
NODEPTR g;

if (p == NULL)

error (“void insertion”);
else if (p->left I= NULL)

error (“invalid insertion”);
else {

q = getnode();

g->info = x;

p->left = q;

g->left = NULL;

167

/* the inorder successor of node(q) is node(p) */
q->right = p;
g->rthread = TRUE;

void setright(NODEPTR p, int x)

{

}

NODEPTR g, r;

if (p == NULL)

error (“void insertion”);

else if (Ip->rthread)

error (“invalid insertion”);

else {

g = getnode();

g->info = x;

/* save the inorder successor of node(p) %
r = p->right;

p->right = q;

p->rthread = FALSE;

g->left = NULL,

/* The inorder successor of node(q) is */
/* t he previous successor of node(p) */
g->right =r;

g->rthread = TRUE;

4.1.4 AVL TREES

An AVL tree is a self-balancing binary search tree, and the
first such data structure to be invented. In an AVL tree the
heights of the two child subtrees of any node differ by at most
one, therefore it is also called height-balanced. Lookup,
insertion, and deletion all take O(log n) time in both the average

and worst cases. Additions and deletions may require the tree to

be rebalanced by one or more tree rotations.

168

The AVL tree is named after its two inventors, G.M. Adelson-
Velsky and E.M. Landis, who published it in their 1962 paper
"An algorithm for the organization of information."

The balance factor of a node is the height of its right
subtree minus the height of its left subtree. A node with balance
factor 1, 0, or -1 is considered balanced. A node with any other
balance factor is considered unbalanced and requires
rebalancing the tree. The balance factor is either stored directly
at each node or computed from the heights of the subtrees.

AVL trees are often compared with red-black trees
because they support the same set of operations and because
red-black trees also take O(log n) time for the basic operations.
AVL trees perform better than red-black trees for lookup-

intensive applications.

AVL (Adelson-Velskii and Landis) Tree Examples

Height: 3
MNodes: 7
Minimum AYL Tree of Height 3
& minimum AYL tree of height 3
Height: 4
MNodes: 12

Minimum AVL Tree of Height 4

A minimum AVL tree of height 4

169

The basic operations of an AVL tree generally involve
carrying out the same actions as would be carried out on an

unbalanced binary search tree, but preceded or followed by one

or more operations called tree rotations, which help to restore
the height balance of the subtrees.
Insertion

Insertion into an AVL tree may be carried out by inserting
the given value into the tree as if it were an unbalanced binary
search tree, and then retracing one's steps toward the root
updating the balance factor of the nodes.

If the balance factor becomes -1, 0, or 1 then the tree is
still in AVL form, and no rotations are necessary. If the balance
factor becomes 2 or -2 then the tree rooted at this node is
unbalanced, and a tree rotation is needed. At most a single or
double rotation will be needed to balance the tree. Only the
nodes traversed from the insertion point to the root of the tree
need be checked, and rotations are a constant time operation,
and because the height is limited to O(log(n)), the execution
time for an insertion is O(log(n)).

Deletion

If the node is a leaf, remove it. If the node is not a leaf,
replace it with either the largest in its left subtree or the smallest
in its right subtree, and remove that node. Thus the node that is
removed has at most one leaf. After deletion retrace the path
back up the tree to the root, adjusting the balance factors as
needed.

The retracing can stop if the balance factor becomes -1
or 1 indicating that the height of that subtree has remained
unchanged. If the balance factor becomes 0 then the height of
the subtree has decreased by one and the retracing needs to

continue. If the balance factor becomes -2 or 2 then the subtree

170

is unbalanced and needs to be rotated to fix it. If the rotation
leaves the subtree's balance factor at 0 then the retracing
towards the root must continue since the height of this subtree
has decreased by one. This is in contrast to an insertion where
a rotation resulting in a balance factor of 0 indicated that the
subtree's height has remained unchanged.

The time required is O(h) for lookup plus O(h) rotations
on the way back to the root; so the operation can be completed
in O(log n) time.

Lookup

Lookup in an AVL free is performed exactly as in an
unbalanced binary search tree, except because of the height-
balancing of the tree, a lookup takes O(log n) time. No special
provisions need to be taken, and the tree's structure is not
modified by lookups. (This is in contrast to splay tree lookups,
which do modify their tree's structure.)

If each node additionally records the size of its subtree
(including itself and its descendants), then the nodes can be
retrieved by index in O(log n) time as well. Once a node has
been found in a balanced tree, the next or previous node can be
obtained in amortized constant time. (In a few cases, about
2*log(n) links will need to be traversed. In most cases, only a
single link need be traversed. On the average, about two links

need to be traversed.)
4.1.4. B-TREE

A multiway search tree of order n is a general tree in
which each node has n or fewer subtrees and contains one
fewer key than it has subtrees. The nodes that have the
maximum number of subtrees are called full nodes. If all the
leaves are at the same level then the tree is said to be

balanced.

171

Formally, a B-tree of order n is a balanced order-n
multiway search tree with the following properties:
1. The root is either a leaf or has at least two sons.
2. Each nonroot node contains at least (n-1)/2 keys.

3. Each path from the root to a leaf has the same length.

A B-tree of order n is also called an n-(n — 1) tree or an
(n = 1)-n tree. Thus, a 4-5 tree is a B-tree of order 5. Diagram
10.14 shows a B-tree of order 5, in which it is assumed that at
most three records fit in a leaf block.

Ble (@ (0 |@

10| g |12 o lo o[22 028 34’ l.ax

/

l468][10][1214 16] [1820 | {2224 26 | [28 30 32 | [34 36 | |38 41 45 |

Diagram 10.14

A B-tree can be viewed as a hierarchical index in which
each node occupies a block in external storage. The root of the
B-tree is the first level index. Each non-leaf node in the B-tree is
of the form

(pO, k1’ p'], k21 p21 vy knr pn)

where, p; is a pointer to the i child of the node, U i < n, and k;

is a key, 1 £i < n. The keys within a node are in sorted order so

ki <k, <---<Kk,,.

All keys in the subtree pointed to by po are less than ki.
For 1 i< n, all keys in the subtree poinied to by p; have values
greater than or equal to k; and less "an ki+1. All keys in the

subtree pointed to by p, are greais or equal to k.

172

Retrieval

To retrieve a record r with key value x, we trace the path
from the root to the leaf that contains r, if it exists in the file. This
path is traced by successively fetching internal nodes (po, k1, p1,
K2, P2, - -, kn, Pn) @nd finding the position of x relative to the keys
Ki, K3, .5 Knye

If ki < x < kis1, then fetching the node pointed to by p; and
this process is repeated. If x < k4, po is used to fetch the next
node; if X 2 Kk,, pn is used. When this process comes to a leaf,

the record with key value x is searched.

Insertion

To insert a record r with key vaiue x into a B-tree, the leaf
L is located at which r should belong. If there is space for rin L,
then r is inserted into L in the proper sorted order.

If there is no space for r in L, a new block L’ is created
and half of the records are moved from L to L', inserting r into its
proper place in L or L. This process is performed to its father F
if it has already n pointers. Inserting the record with key value
23 into a B-tree shown in Diagram 10.14 produces the B-tree in
Diagram 10.15.

o5 9[25/0l_|o] |0
/ \ ‘\
'PO?IZ‘ of |of 929 ® .my 38 ol lo

L\

468 EE][I’ZML()_HXSNI (2223 | [2426|[283032 | [3436 | (384145 |

Diagram 10.15

173

Deletion

To delete a record r with key value x, the leaf L
containing r is found and it is removed from L, if it exists. The

key values of L's father F are updated to reflect the change in L.

If L becomes empty after deletion, the keys and pointers
in F are adjusted to reflect the removal of L. If the number of
sons of F is less than n/2, the node F’ immediately to the left (or
the right) of F at the same level is examined.

If F’ has at least n/2 +1 sons, the keys and pointers in F
and F' are evenly distributed between F and F'. Then the keys
of F and F' are modified in the father of F. If necessary, this

change is recursively rippled to as many ancestors of F.

If ' has exactly n/2 sons, then F and F’ are combined
into a single node. The key and pointer to F’ are to be removed
from the father of F’.

Removing record 10 from the B-tree in Diagram 10.15
results into B-tree of Diagram 10.16.

/, ’ .\28 o i W
12 18| @122 4 25 38
plfaplplo [apefe[o o] e

l468| 1214161820 | [2223 | [2426 | 283032 | 3436 | |38 41 45

Diagram 10.16
4.1.5. APPLICATIONS OF TREES

A binary tree can be used to find all duplicates in a list of
numbers. The first number in the list is placed as the root of the
tree with empty left and right subtrees. Each successive number

174

in the list is then compared to the number in the root. If it
matches, then it is the duplicate. If it is smaller, the left subtree

is examined; if it is larger, the right subtree is examined.

If the subtree is empty, the number is not a duplicate and
is placed into a new node at that position in the tree. If the
subtree is nonempty, the number is compared with the contents
of the root of the subtree and the entire process id repeated with

the subtree. An algorithm for doing this follows.

/* read the first number and insert it */
/* into a single-node binary tree */

scanf(“%d”, &number);
tree = maketree(number);
while (there are numbers left in the input) {
scanf(“%d”, &number);
p =q = tree;
while (number != info(p) && g != NULL) {
pP=q;
if in (number < info(p))
q = left(p);
else
q = right(p);
f
if (number == info(p))
printf(“%d %s \n”, number, “is a duplicate”);
/* insert number to the right or left of p */
else if (number < info(p)
setleft(p, number);
else
setright(p, number);

Diagram 10.17 illustrates the tree constructed from the
input 14, 15,4, 9,7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5.

175

Given a list of numbers in an input file, it can be printed in
ascending order. As the numbers are read, they can be inserted
into a binary tree such as the one of Diagram 10.17. However,
unlike the previous algorithm used to find duplicates, duplicate

values are also placed in the tree.

=]

When a number is compared with the contents of a node

Diagram 10.17

in the tree, a left branch is taken if the number is smaller than
the contents of the node and a right branch if it is greater or
equal to the contents of the node. Thus if the input list is 14, 15,
4,9,7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5 the binary tree of Diagram
10.18 is produced.

Such a binary tree has the property that all elements in
the left subtree of a node n are less than the contents of n, and
all elements in the right subtree of n are greater than or equal to
the contents of n. A binary tree that has this property is called a
binary search tree. If a binary search tree is traversed in inorder
(left, root, right) and the contents of each node are printed as

the node is visited, the numbers are printed in ascending order.

176

Diagram 10.18

Learning Activity 10.1

¢ Write your answer in the space given below.

¢ Check your answer with the one given at the end of the unit.

1.

Answer the following questions about the tree of
Diagram 10.19.

Diagram 10.19

a) Which nodes are leaves?

b) Which node is the root?

177

c) What is the father of node C?

d) Which nodes are sons of C?

e) Which nodes are ancestors of E?

f) Which nodes are descendants of E?

g) What are the right brothers of D and E?

h) Which nodes are to the left and to the right of G?
i) What is the depth of node C?

j) What is the height of node C?

2. List the nodes of Diagram 10.19 (consider H as the left son
of E) in
a) Preorder,

b) Inorder, and

c) Postorder

178

3. Prove that a binary tree with N internal nodes has N+
external nodes.

4. Draw tree representations for the following expressions:
a) A*(B+C*(D+E))

b) A*(B+C)*D+E

10.2 SEARCHING TECHNIQUES

A table or a file is a group of elements, each of which is
called a record. A key is associated with each record which is
used to differentiate among different records. If the key is
contained in the record is called an internal key or an embedded
key. External keys are keys stored in a separate table that

includes pointers to the records.

A primary key is a unique set of key and if the key is not
unique, the key is called as secondary key if there are two or
more records with the same key.

179

A search algorithm is an algorithm that accepts an
argument x and tries to find a record whose key is x. The
algorithm may return the entire record or, it may return a pointer
to that record. A successful search is called as retrieval. A table
of records in which a key is used for retrieval is called a search
table or dictionary.

It is possible that the search for a given argument in a
table is unsuccessful if there is no such record in the table; then
the algorithm may return a special “null record” or null pointer. In
some times if a search is unsuccessful the new record may be
added to the table. An algorithm that does this is called a search
and insertion algorithm.

The table or file may be organized as an array of
records, a linked list, a tree, or even a graph. Searches in which
the entire table is constantly in main memory are called internal
searches, whereas those in which most of the table is kept in

auxiliary storage are called external searches.
Dictionary as an Abstract Data Type

A search table or a dictionary can be presented as an
abstract data type.

typedef KEYTYPE . .. /* a type of key */
typedef RECTYPE. .. /* a type of record ¥/
RECTYPE nullrec = . . . /*a “null” record */

KEYTYPE keyfunct(r)
RECTYPET;

{...
b

The abstract data type table may then be declared as a
set of records.

180

Algorithmic Notation:

A table (keys plus records) organized as an array might
be declared in C by

#define TABLESIZE 1000
typedef KEYTYPE ...
typedef RECTYPE. . .

struct {
KEYTYPE k;
RECTYPE ;

} table [TABLESIZE];

or it might be declared as two separate arrays:

KEYTYPE k[TABLESIZE];
RECTYPE r[TABLESIZE];

In the first case the ith key would be referenced as table[i].k; in
the second case, it will be K[i].

Similarly, for a table organized as a list, either the array
representation of a list or the dynamic representation of a list
could be used. In the former case the key of the record pointed
to by a pointer p would be referenced as node[p].k; in the latter
case, as p -> k.

10.2.1. LINEAR SEARCH

The simplest technique for searching an unsorted table
for a particular record is to scan each entry in the table in a
sequential manner until the desired record is found. This
method is called as linear (or sequential) search.

This search is applicable to a table organized either as
an array or as a linked list. Let k be an array of n keys, k[0]

181

through k[n-1], and r an array of records, r[0] through r[n — 1],
such that k[i] is the key of r[i]. An algorithm for such a search
procedure is as follows:
for (i=0;i<n;i++)
if (key == K[i]))

return (i);
return (-1);

This function returns the index number of the matching

entry if there is one; otherwise, it returns -1.

Storing the table as a linked list has the advantage that
the size of the table can be increased dynamically as needed. If
the table is organized as a linear linked list pointed by table and
linked by a pointer field next. The sequential insertion search for

a linked list may be written as follows:

q = null;

for (p = table; p != null && k(p) != key; p = next(p))
q=p;

if (p != null) /* this means that k(p) == key */
return (p);

/* insert a new node */
s = getnode();
k(s) = key;
r(s) = rec;
next(s) = null;
if (g == null)
table = s;
else
next (q) =s;
return(s);

Efficiency of Sequential Searching:

The number of comparisons made by a sequential

search in a table of size n can given as: if the record is the first

182

one in the table, only one comparison is performed; if the record
is the last one in the table, n comparisons are necessary. On
the average, a successful search will take (n + 1)/2 comparisons
and an unsuccessful search will take n comparisons. In any

case, the number of comparisons is O(n).
Searching an Ordered Table:

If the table is stored in ascending or descending order of
the record keys, the searching method can be improved. In this
case only n/2 comparisons are needed. This is because the
missing of a key can be easily known as a larger key is

encountered.
Indexed Sequential Search:

To improve the efficiency of the search in a sorted table
an auxiliary table, called an index, is set aside in addition to the
sorted table. This method is called the indexed sequential

search.

Each element in the index consists of a key kindex and a
pointer to the record in the file that corresponds to kindex. The
elements in the index, as well as the elements in the file, must
be sorted on the key (Diagram 10.20). The aigorithm used for

searching an indexed sequential file is as follows:
for (i =0; i < indxsize && kindex(i) <= key; i++)
lowlim = (i==0) ? 0 : pindex(i - 1),
hilim = (i == indxsize) ? n-1 : pindex(i) - 1,
for (j = lowlim; j <= hilim && k(j) I= key; j++)

return((j > hilim) ? -1 : j);

183

k (key) r (record)

8

Index 125

kindex | pindex 276

321 ——» 321

592 — 451

876 486

592

599

749

_4 876

Diagram 10.20
10.2.2. BINARY SEARCH

The most efficient method of searching a sorted
sequential table without the use of indices or tables is the binary
search. The argument is compared with the key of the middle
element of the table. If they are equal, the search ends
successfully; otherwise, either the upper or lower half of the
table must be searched in a similar manner. Because of the
division of the table to be searched into two equal parts, this
search is called binary search.

A recursive C routine for binary search is written as
follows:

int binsrch(int a[], int x, int low, int high)
{
int mid;
If (low > high)
return (-1);
mid = (low + high) / 2;
return (x == a[mid] ? mid : x < a[mid] ?

184

binsrch(a, x, low, mid-1) :
binsrch(a, x, mid+1, high);

The function above accepts an array a and an element x
as input and returns the index i in array a such that a[i] equals x,

or -1 if no such i exists.

The nonrecursive version of the binary search algorithm

is presented as follows:

low = 0;
high=n-1;
while(low <= high) {
mid = (low + high) / 2;

if (key < k[mid])
high = mid - 1;
else if (key > k[mid])
low = mid + 1;
else
return (mid); /*successful’/
}
return (-1);
}

A trace of this algorithm for the sample table 75, 151,
203, 275, 318, 489, 524, 591, 647, and 727 is given for x = 275,
727, and 340 in Table 10.1.

Each comparison in the binary search reduces the
number of possible candidates by a factor of 2. Thus the
maximum number of key comparisons is never more than logan.

Thus the running time of binary search is O(log n).

185

Search for 275 Search for 727 Search for 340

lteraton L H M |lteraton L H M |lteraton L H M
1 1 10 5 1 1 10 5 1 1 10 5
2 1 4 2 2 6 10 8 2 6 10 8
3 3 4 3 3 9 10 9 3 6 7 6
4 4 4 4 4 10 10 10 4 T T 7

Table 10.1 Binary-search trace

Learning Activity 10.2
¢ Write your answer in the space given below.

¢ Check your answer with the one given at the end of the unit.

1. Modify the sequential search algorithm to add a record rec
with key key to the table if key is not already there.

2. Write an algorithm for sequential search in a sorted table.

186

3. Give the binary trace for x = 90 and 500 in the following array
of elements. 23, 76, 90, 112, 371, 405, 450, 537, 620, 777

4.3 SORTING TECHNIQUES

A file of size of n is a sequence of n items r[0], r[1], . . .
rin — 1]. Each item in the file is called a record. A key K([i] is
associated with each record r[i]. The key is usually a subfield of
the entire record. The file is said to be sorted on the key if i < j

implies that k[i] precedes k[j] in some ordering on the keys.

Depending on the data type of the key, records can be
sorted numerically or, more generally, alphanumerically. In
numerical sorting, the records are arranged in ascending or
descending order according to the numerical value of the key.

In the example of the telephone book, the file consists of
all the entries in the book. Each entry is a record. The key upon
which the file is sorted is the name field of the record. Each
record also contains fields for an address and a telephone

number.

A sort can be classified as being internal if the records
that it is sorting are in main memory or external if some of the
records that it is sorting are in auxiliary storage. The main
difference between the two is that an internal sort can access
any item easily whereas an external sort must access items

sequentially or at least in large blocks.

187

It is possible for two records in a file to have the same
key. A sorting method is said to be stable if it preserves the
relative order of duplicate keys in the file.

The general criteria for judging a sorting algorithm are

= How fast can it sort information in an average case?
= How fast are its best and worst cases?
= Does it exhibit natural or unnatural behavior?

*= Does it rearrange elements with equal keys?

Bubble Sort:

Let x is an array of integers of which the first n are to be
sorted so that x[i] € x[j] for 0 < i < j < n. The basic idea
underlying the bubble sort is to pass through the file
sequentially. In each pass an element is compared with its
predecessor (x[i] with x[i-1]) and the two elements are
interchanged if they are not in proper order. The elements are
like bubbles in a tank of water — each seeks its own level. A
simple form of the bubble sort is:

void bubble (int x[], int n)

{
inti, j, t

for (i=1;i<n;i++)
for(j=n-1;j>=1i; j-){
if (x[-11 > x[]) {
/* exchange elements */
t = x[j-1];
x[j-1]1 = x[j];
X[j] = t;

188

Considering the file 25 57 48 37 12 92 86 33. The

X[7] with x[6]
x[6] with X[5]
X[5] with x[4]
x[4] with x[3]
x[3] with x[2]
x[2] with x[1]
x[1] with x[0]

(33 with 86)
(33 with 92)
(33 with 12)
(12 with 37)
(12 with 48)
(12 with 57)
(33 with 26)

following comparisons are made on the first pass.

Interchange

Interchange

No Interchange

Interchange
Interchange
Interchange

Interchange

Thus, after the first after the first pass, the file is in the order
12 25 57 48 37 33 92 86 The complete set of iterations is
the following:

Iteration O 25 57 48 37 12 92 86 33
Iteration 1 12|25 57 48 86
lteration 2 92
Iteration 3 92
Iteration 4 92
Iteration 5 92
Iteration 6 92
Iteration 7 92

Diagram 10.21

There are n-1 passes and n-1 comparisons on each
pass. Thus the total number of comparisons is (n — 1) * (n — 1),
which is O(n?).

10.3.1. SELECTION SORT

A selection sort selects the element with the lowest value
and exchanges it with the first element. Then, from the

remaining n — 1 elements, the element with the smallest key is

189

found and exchanged with the second element, and so forth.
The exchanges continue to the last two elements. The code that

follows shows the basic selection sort.

void selectionsort(int x[], int n)

{

int i, minidx, j, min;

for(i=0; i<n—1;i++){
min = x[0];
minidx = 0;
for (j =i+ 1; < n; j++)
if (x[j] < min) {
min = x[j];
minidx = j;
}
X[minidx] = x[i];
x[i] = min;

}

The first pass makes n — 1 comparisons, the second
pass makes n — 2, and so on. Therefore, there is a total of

(N=1)+(n=2)+(n=3)+...+1=n*(n-1)2

comparisons, which is O(n?). There is little additional storage
required. Therefore, the sort may categorize as O(n?).

For example, if the selection method were used on the
following array 25 57 48 37 12 92 86 33 each pass would
look like this:

Iteration O 25 57 48 37 12 92 86 33
Iteration 1 57 48 37 25 92 86 33
lteration 2 37 57 92 86 33
Iteration 3 37 57 92 86 48
Iteration 4 | 57 92 86 48

190

lteration 5

lteration 6

lteration 7

Diagram 10.22

10.3.2. INSERTION SORT

The insertion sort initially sorts the first two members of
the array. Next, the algorithm inserts the third member into its
sorted position in relation to the first two numbers. Then it
inserts the fourth element into the list of three elements. The
process continues until all the elements have been sorted. The

code for a version of the insertion sort is shown next.

void insertionsort(int x[], int n)

{
inti, k, y;

for(k = 1; k < n; k++) {
/* insert x[k] into the sorted file */
y = x[K];
/* move down 1 position all eleinents greater than y */
for(i=k—1;i>=0; && y < x[i]; i-)
x[i + 1] = Xx[i];
/*insert y at proper position */
xi+1]=y;

The number of comparisons occur during an insertion
sort depends upon the ordering of the file. If the file is sorted,
only one comparison is made on each pass, so that the sort is
O(n). If the file is initially sorted in the reverse order, the sort is
O(n?), since the total number of comparisons is

(n=1)+(n=-2)+ ...3+2+1=n*(n-1)2

191

The complete set of iterations for the insertion sort for the
file with elements 256 57 48 37 12 92 86 33 is shown in
Diagram 10.23.

Iteration O 25 57 48 37 12 92 86 33
Iteration 1
iteration 2
Iteration 3
Iteration 4
Iteration 5
Iteration 6

Iteration 7

lteration 8

Diagram 10.23

4.3.3. QUICKSORT

Quicksort is a divide-and-conquer method for sorting.
This sort is also called as partition exchange sort. Let x be an
array, and n the number of elements in the array to be sorted.
An element a called as pivot is selected from a specific position
within the array (for example, a = x[0]). Suppose that the
elements of x are partitioned so that a is placed into position j
and the following conditions hold:

1. Each of the elements in positions 0 through j — 1 is less
than or equal to a.

2. Each of the elements in positions j + 1 through n — 1 is
greater than or equal to a.

If these two conditions hold for a particular a and j, a is
the jth smallest element of x, so that a remains in position j

192

when the array is completely sorted. If this process is repeated
with the subarrays x[0] through x[j — 1] and x[j + 1] through
x[n — 1] and any subarrays created by the process in successive

iterations, the final result is a sorted file.

The outline of an algorithm quick(lb, ub) to sort all the
elements in an array x between positions Ib and ub as follows:
if (Ib >= ub)
return;
partition(x, Ib, ub, |);
quick(x, Ib, j —1);
quick(x, j + 1, ub);

The object of partition is to allow a specific element to
find its proper position with respect to the others in the subarray.
One way to effect a partition efficiently is the following: Let
a = x[lb] be the element whose final position is sought. Two
pointers, up and down, are initialized to the upper and lower

bounds of the subarray, respectively.

At any point during execution, each element in a position
above up is greater than or equal to a, and each element in a
position below down is less than or equal to a. the two pointers
up and down are moved towards each other in the following

fashion.

1. Repeatedly increase the pointer down by one position

until x[down] > a.

2. Repeatedly decrease the pointer up by one position until

x[up] <= a.

3. If up > down, interchange x[down] with x[up].

193

The process is repeated until the condition is step 3 fails
(up <= down), at which point x[up] is interchanged with x[ib],

whose fina! position was sought, and j is set to up.

The algorithm can be impiemented by the following
procedure.

void partition (int x{], int Ib, int ub, int *pj)
{

int a, down, temp, up;

a = x[Ib};
up = ub;
down = |b;
while (down < up)
while {x[down] <= a && down < ub)

down ++: /* move up the array */
while (xfup] > a) /* move dowr the array */
up-- ,

if (down < up) {
/* interchange x[down] and x[up] */
temp = x[down];
x[down] = x[up];
x[up] = temp;

}
x[lb] = x{up];
xfup] = a;

Py = up;

if a file of size n is a power of 2, such that n = 2", and
m = log.n. If the position of pivot is the middle of the array, then
there will be n comparisons on the first pasc aiter which the file
is split into two subfiles each of sice n/2, approximately. For
each of these two files thera are n'2 comparisons, and a total of
four files of each zize n/4 are ‘crmed Thus the total number of

comparisons for the entire sort is

194

n+2*(nf2) + 4*(n/4) + 8" {(n/8) + . . .+ n*(n/n)
or
n+tn+n+n+...tn(mterms)=n*m

corapansons. There are m terms because the file is subdivided
m times Thus the total number of comparisons is O{n*m) or
O(n log n).

If an initial array is given as 12 25 57 48 37 33 92 86
the steps are performed to obtain the sorted list.

25 67 48 37 12 92 86 33

57 48 37 92 86 33

=

10.3.4. HEAPSORT

The heapsort is an in-place (does not require any
additional storage space) scit that requires only O(n log n)

operations regardless of the crder of ihe order of the input.

A descending heap (ai=o called max heap or descending
partially ordered tree) of size r: is defined as-an almost complete
binary tree of n nodes such that the content of each node is less
than or equal to the content its father. If the sequential
representation of an almost ccinplete binary tree is used, this

condition reduces to inequality
infofj] <info[(j—1)/2]for0 <((j— I)/2)<j<n-1

For this condition the root of the tree contains the largest
element in the heap. Also any path from the root to a leaf is an
unordered list in descending order.

It is also possible to define an ascending heap (or a min
heap) as an almost complete binary tree such that the content
of each node is greater than or equal to the content of its father.
In this structure, the root contains the smallest element of the

heap, and any path from the root to a leaf is an ascending order.
Heapsort Procedure:

A heapsort procedure is outlined in C as follows:

void heapsort (int x[], int n)
{
inti, elt, s, f, ivalue;

/* preprocessing phase; create initial heap */
for (i=1;i<n;i++){

elt = x[i];

5=

f= (s-1)2;

196

while (s > 0 && x[f] < elt) {

x[s] = xIf];
s=f;
f=(s-1)/2;
}
X[s] = elt;

}

/* selection phase; repeatedly remove x[0], insert it */
/* in its proper position and adjust the heap ¥/
for (i =n-1;i>0; i-) {

ivalue = x]i];
x[i] = x[0];
f=0;
if (i==1)
s=-1;
else
s=1;
if (i >2 && x[2] > x[1])
s =2,
while (s >= 0 && ivalue < x{s]) {
x[f] = x[s];
f=s;
s = 2"f+1;
if (s+1 <=i-1 && x[s] < x[s+1])
s =st+1;
if (s > i-1)
s =-1;
}
x[f] = ivalue;

A complete binary tree with n nodes has log (n + 1)
levels. Thus if each element in the array were a leaf, requiring it
to be filtered through the entire tree both while creating and
adjusting the heap, the sort would still be O(n log n).

Diagram 4.25 illustrates the creation of a heap of size 8
from the original file 25 57 48 37 12 92 86 33. Diagram 4.26

197

illustrates the adjustment of the heap as x[0] is repeatedly
selected and placed into its proper position in the array and the

heap is readjusted, until all the elements are processed.

In the average case the heapsort is not efficient as the
quicksort. However, heapsort is far superior to quicksort in the
worst case. In fact, heapsort remains O(n log n) in the worst

case.

Diagram 10.25

198

Diagram 10.26

199

x[1]

Diagram 10.26 (cont.)
10.3.5. TWO-WAY MERGE SORT

Merging is the process of combining two or more sorted
files into a third sorted file.

Divide the file into n subfiles of size 1 and merge
adjacent pairs of files. Then there will be n/2 files of size 2.
Repeat this process until there is only one file remaining of size
n. Diagram 4.27 illustrates this process on a sample file. Each
individual file is contained boxes.

200

A routine to implement the merge sort is described as
follows: an auxiliary array aux of size n is required to hold the
resuits of merging two subarrays of x. The variable size contains
the size of the subarrays being merged. Since at any time the
two files being merged are both subarrays of x, lower and upper

bounds are required to indicate the subfiles of x being merged.

File [25] [57] [48] [37] [12] [92] [86] [33]

Pass 1 [25 57] [37 48] [12 92] [33 86]

Pass 2 [25 37 48 57 12 33 86 92
/

Pass 3 12 25 33 37 48 57 86 92

Diagram 10. 27

I1 and u1 represent the lower and upper bounds of the
first file, and 12 and u2 represent the lower and upper bounds of
the second file, respectively. i and j are used to reference
elements of the source files being merged, and k indexes the

destination file aux. The routine follows:

#define NUMELTS . ..

void mergesort (int x[], int n)

{ int auxNUMELTS], i, j, k, 11, 12, size, u1, u2;
size =1; /* merge files of size 1%/

while (size < n) {

201

11 =0;

k=0,

while (11+size < n) {
12 = 1+size;
ut =12-1;

u2 = (12+size-1 < n) ? 12+size-1 : n-1;
/* proceed through the two subfiles */
for(i=1,j=12;i<=u1 && j <=u2; k++)
/* enter smaller into the array aux */
if (x[i] <= x[i])
aux[k] = x[i++];
else
aux(k] = x[j++];
/* one of the files exhausted */
for (; i <= u1; k++)
aux[k] = x[i++];
for (; j <= u2; k++)
aux[k] = x[j++];
1 =u2+1;
}
for(i=11; k <n; i++)
aux[k++] = x][i];
for (i =0;i<n;it++)
x[i] = aux(i];
size *= 2;

There are obviously no more than logz,n passes in
mergesort, each involving n or fewer comparisons. Thus,
mergesort requires no more than n*log,n comparisons. But

mergesort requires O(n) additional space for the auxiliary array.

202

Comparison Of Sorting Algorithms:

Algorithm Average | Worst case

Space usage
Bubble sort n?/4 2 ; ‘2 In place ll
Selection sort n’/4 n’/4 In place
Insertion sort n’/4 n’/4 In place
Quicksort O(n logzn) i Extra logzn entries
Heapsort O(n logzn) O(n logzn) In place
Merge sort O(n logzn) O(n Iog'zn) Extra n entries .
Table 10.2

Learning Activity 10.3

¢ Write your answer in the space given below.

¢ Check your answer with the one given at the end of the unit.

1. Sort the array of 10 elements 42, 23, 74, 11, 65, 58, 94, 36,

99, 87 using the sorting methods

a) Bubble sort
b) Insertion sort
c) Selection sort
d) Quicksort

e) Heapsort

f) Merge sort

203

10.4. FILE ORGANIZATIONS

Most operating systems provide a set of basic file
organizations that are popular with the users of the system. The

three most common types of file organizations are
e sequential
» indexed sequential

e direct

10.4.1. SEQUENTIAL ORGANIZATION

In a sequential file, records are stored one after the other
on a storage device. The sequential allocation is simple, and
flexible enough to handle large volumes of data, a sequential file
has been the most popular basic file structure used in the data-

processing industry.

All types of external storage devices support a sequential
file organization. Some devices, by their physical nature, can

only support sequential files.

204

The records are maintained in the logical sequence of
their primary key values. Accessing a particular record requires
the accessing of all previous records in the file. Search for a
given record in sequential file requires, on average, access to

half the records in the file.

Each time a read or write operation is executed for a
particular storage device, a block of logical records is
transferred. The apparent difference in a program’s read and
write statements and read and write commands issued for a
particular device is resolved by using a buffer between external

storage and the data area of a program.

A buffer is a section of main memory which is equal in
size to the maximum size of a block of logical records used by a
program. The data-management routines of the operating
system use buffers for the “blocking” and “deblocking” of

records.

External storage

Buffer Data area

A 4

Diagram 10.28
Blocking and deblocking can be illustrated as follows:

when the first read statement is executed on a sequential file, a
block of records is moved from external storage to a buffer. The

205

first record in the block is then transferred to the program’s data
area. For each subsequent execution of a read statement, the
next successive record in the buffer is transferred to the data
area.

Only after every record in the buffer has been moved to
the data area, in response to read statements, does the next
read statement cause another block to be transferred to the
buffer from external storage. The new records in the buffer are
moved to the data area, as described previously, and this entire
process is repeated for each block that is read.

In a similar fashion, write statements cause transfer of
program data to the buffer. When the buffer becomes full, then
the block is written on the external storage device immediately

after the preceding block of records.

The buffering technique described above is called as
single buffering. Multiple buffering makes use of a queue of
buffers which are normally controlled by the operating system.

The important points concerning the sequential

processing of sequential files can be summarized as follows:

1. Sequential processing is most advantageous if a large
number of transactions can be batched to form a single

“run” on the file.

2. A new file should be created if there are any additions

and a significant number of deletions requested.

3. Quick response time should not be expected for a

transaction or a batch or transactions.

4. The requirement that the records in a sequential file be

ordered by a particular key is not essential if the file is

206

being scanned to perform the same operation on every

record.
10.4.2. INDEXED SEQUENTIAL ORGANIZATION
To improve the quick response time of a sequential file, a type

of indexing technique can be added. An index is a set of <key,

address> pairs. Indexes created from a sequential set of primary

keys are referred to as indexed sequential. The term index file

describes the indexes and data file to refer to the data records.

The index provides for random access to records, while

the sequential nature of file provides easy access to the

subsequent records as well as sequential processing. An

additional feature of this file system is the overflow area.

Sequential | Block at No of Record No of
index address | comparisons key comparisons
Ks A1 1 K1 1 (2)
Kz 2 3)
Ks s (s+1)
Kas Az 2 Ks+1 1 (3)
Kss2 2 (4)
Ks1+52
Kn Am m
Kn S (s+m)

Diagram 10.29

207

If the index file contains only the address part of
<key, address> pair, it is called an implicit index else it is called
an explicit index. In a limit indexing or partial indexing scheme, a
single entry per track is maintained in the index. A number of
memory locations are grouped together and can be identified by

a single address.

Considering a set of sorted keys <Ky, Ky, . . . ,Ky>, with
Ki<Ky< ... <K, divided into m groups of sizes <s4, sp, . . .
,Sn> Wwith the sorted order of the keys within each group. Each
group is identified by the key with the largest value in that group
and called the sequential index key. Diagram 10.29 illustrates
this.

It is also possible to create a hierarchy of indexes with
the lowest level index pointing to records, while the higher level
indexes point to the indexes below them (Diagram 10.30).

_— Data

Blk 0
\

\ ' Data
i ' Blk 1

//

\

P i

My

Data
Blk

Data
Blk

Diagram 10.30
An indexed sequential file is made up of the following

components:

208

1. A primary data storage area contains the records written

by the users programs.

2. Overflow area(s) permits the addition of records to the
files.

3. A hierarchy of indices. In a random enquiry update, the
physical address is obtained using indices.

When using a disk device to store index-sequential files,
the data is stored on cylinders, each of which is made up of a
number of tracks. Each track index entry is made up of the

following items:
1. The address of the prime data track to which the entry
refers.
2. The highest key of a record in the prime data track.

3. The highest key of a logical record in that data track,

including records in the overflow areas.

4. The address of a record with the lowest key in the
overflow area associated with that track.

Cylinder entry

....................... Highest key in Pointer to the

track track
- 1% entry--------- > - Last entry------- >
Highest key | Ptr to the 1% Highest key | Ptrto the
in 1% track track | 7 in last track | last track

Diagram 10.31

209

The important properties relating to indexed sequential

files are:

%

4.4.3.

Indexed sequential files provide reasonably fast access

to records using either sequential or direct processing.

For relatively static files, the independent overflow area
can be eliminated.

For highly volatile files, the access time for a record
becomes excessive as overflow areas become filled.

The housekeeping details for indexed sequential files are
generally provided in most systems.

DIRECT ORGANIZATION

In direct file organizations, the key value is mapped

directly to the storage location by hashing. The hash function h

maps the key value k to the value h(k), which is used as an

address.

The hash function must map the key values uniformly

and it should not map many different key values to a single

address. There are innumerable ways of converting a key to a

numeric value. The important properties related to direct files

are:

. Direct access to records in a direct fie is rapid.

The space utilization for a direct file is poor compared to
other file organizations.

The performance attained using a direct file is very
dependent upon the key-to-address transformation
algorithm adopted.

210

4. Records can be accessed serially but not sequentially

unless separate ordered list of keys is maintained.
Learning Activity 10.4
¢ Write your answer in the space given below.

¢ Check your answer with the one given at the end of the unit.

1. Compare the three file organizations.

Let us sum up

The various tree structures and their representations are
discussed. The algorithms for the operations on trees are
implemented in C. A number of searching and sorting
algorithms are coded in C, and they are analyzed based on the
running time and additional space is made. The main file
organizations sequential, index sequential and direct are

explained with their advantages and disadvantages.

ANSWERS TO LEARNING ACTIVITIES

Learning Activity 10.1

1. a) Leaves-D, K, L,F,1,J
b) Root—-A
c) Father of node C - A
d) Sonsof C—-F, G

e) Ancestorsof E—A, B

211

f) Descendants of E—H, K, L

g) Right brothers of D and E — E, None

h) Nodes to the left and to the right of G — F and none
i) Depth of node C — 2

j) Height of node C — 1

2. The three tree traversals of the given binary tree is
Preorder: ABDEHKLCFGIJ
Inorder DKLHEBFIJGCA
Postorder DBKHLEAFCIGJ

3. This can be proved by induction. A binary tree with no internal
nodes has one external node, so the property holds for N = 0.
For N > 0, any binary tree with N internal nodes has k internal
nodes in its left subtree and N — 1 — k internal nodes its right
subtree for some k between 0 and N-1, since the root is an
internal node. By the inductive hypothesis, the left subtree has
k + 1 external nodes and the right subtree has N — k external
nodes, for a total of N + 1.

4.a)A*(B+C*(D+E)) b)A*(B+C)*D+E

212

o &
oJo olo
oJo oo
DO D6

Diagram 4.32

Learning Activity 10.2

1. The sequential search algorithm to add a record rec with key
key to the table if key is not already there as follows:

for (i=0;i<n;i++)
if (key == k[i]))
return (i);
k(n) = key;
r(n) = rec;
n++;

return (n-1);

2. An algorithm for sequential search in a sorted table is

for (i=0;i<n && key <= k(i); i++)

if (key == k(i))
return (i);
return (-1);

3. The binary trace for x = 90 and 500 in the following array of
elements. 23, 76, 90, 112, 371, 405, 450, 537, 620, 777

Search for 90 Search for 500

lteration L H M |lteration L H M

1 1 10 5 1 1 10 5

213

2 1 4 2 2 6 10 8
3 3 4 3 3 6 7 6
4 SO O
5 8 7
Learning Activity 10.3

1. Sort the array of 10 elements 42, 23, 74, 11, 65, 58, 94, 36,
99, 87 using the sorting methods

a) Bubble sort

0 42 23 74 11 65 58 94 36 99 87
’ 65 58 94 87 99

58 65 87 94 99
74 65 87 94 99
65 74 87 94 99

0 42 23 74 11 65 58 94 36 99 87
87

87
87
87
87
87
99
99

214

c¢) Insertion sort

42 23 74 11 65 58 94 36 99 &7

© 00 N O O A W N = O

-
o

d) Quicksort
0 |42 23 74 11 65 58 94 36 99 87

215

e) Heapsort

The heap created with all 10 elements:

After sorting:

\0 *

216

f) Merge sort

[42] [23] [74] [11] [65] [58] [94] [36] [99] [87]
[23 42] [11 74] [58 65] [36 94] [87 6 99]
v
[11 23 42 74] [36 58 65 94] [87 99]
v
[11 23 36 42 58 65 74 94] [87 99]
[11 23 36 42 58 65 74 87 94 99]
Learning Activity 10.4
1. Comparison of three file organizations:
; Indexed i
Sequential sequential Direct
Saduenial Suitable Suitable | Not suitable
access
Random | ot giitable | Possible Suitable
access
Record Creation of Requires Possible
insertion new file overflow area
" Indexed :
Sequential sequential Direct

217

! Creation of x Possible
Deletion ro— Marking
i Possible Possible
Update Creatnop of
new file
Overhead None Index file Buckets

Model Questions

1.
2.
3.

Explain in detail about sequential files.

Differentiate Direct and Indexed files.

Show the implementation of Collision Management in Direct
files.

References

An Introduction to Data Structures with Applications by
Tremblay, J.P. and Sorenson, P.G.

Nicklaus Wirth, “Algorithrns and Data Structures -
Programmes” Prentice Hall of India Pvt. Ltd.,, New Delhi,
2002.

Y.Langesam, M.J. Augenstein and A.M. Tenenbaum “Data
Structures using C and C++” |l edition, Pearson Education,
New Delhi, 2002.

218

